Low Power (Battery-Free) Systems

Vamsi Talla CTO Jeeva Wireless

Ambient Backscatter

Vincent Liu, Aaron Parks, Vamsi Talla, Shyam Gollakota, David Wetherall, Joshua Smith

Our Goal

Interactive devices that compute and communicate without batteries

What We Are After

How to power computation, sensing, and communication?

Leverage Existing Wireless Signals

Available at almost any time and place, rain or shine

Recent Work Harvests 10s of μW ['09]

Enough for computation and sensing

 Orders of magnitude less power than needed for radio communication ['13]

Challenge: Communication Between Battery-Free Devices

Generating radio signals is expensive

- Could duty cycle
 - Limits interactive applications

Can we communicate without either device generating radio signals?

Ambient Backscatter Use existing signals instead of generating our own

Works with only ~5% of the harvested power!

'0' bit – Absorb TV Signals '1' bit – Reflect TV signals

Challenges

- Reader sends constant wave
- Receive chain: 100s of mW
- Reader centrally coordinates

Ambient Backscatter

- Reader sends constant wave !
- Receive chain: 100s of mW
- Reader centrally coordinates | Need distributed MAC

Ambient Backscatter

- Uses uncontrollable signals
- Receive chain: 0.5 μW

Challenges

 Extracting backscattered signals from ambient signals we don't control

Decoding on a battery-free device

Designing distributed MAC for battery-free devices

Challenges

 Extracting backscattered signals from ambient signals we don't control

Decoding on a battery-free device

Designing distributed MAC for battery-free devices

How Do We Extract The Backscattered Signals?

Alice's reflections change the average amplitude

Solution: Detect Changes in Average Amplitude Alice Sends 1010... Alice Inactive

Moving Window Average

If we had digital samples, averaging would be easy

Need power-hungry analog-to-digital converters

Challenges

• Extracting backscattered signals from ambient signals we don't control

Decoding on a battery-free device

Designing distributed MAC for battery-free devices

Use RC Circuits to Average

 Capacitor slowly charges/discharges when voltage is applied/removed

Provides a cheap, analog, exponential moving average

Use RC Circuits to Average

 Capacitor slowly charges/discharges when voltage is applied/removed

By picking the right RC values, we can selectively filter out the high TV frequencies

Now that we can decode bits...

Link Layer

Physical Layer

Distributed MAC?

Challenges

• Extracting backscattered signals from ambient signals we don't control

Decoding on a battery-free device

Designing distributed MAC for battery-free devices

We Use CSMA

CSMA uses carrier sense, i.e. energy detection

- Battery-free devices do not have energy levels
 - Requires power-hungry ADCs

Challenge: Energy detection without access to the energy levels

Solution: Leverage Hardware Properties for Energy Detection Coincuit filters out the TV signals

- 1. RC circuit filters out the TV signals
 - > Removes high-amplitude variations

In the absence of backscattering, we see a constant output

Constant Output

Solution: Leverage Hardware Properties for Energy Detection

No backscatter

See all 0s or all 1s

Backscatter

See many transitions

Use bit transitions as proxy for energy detection

Evaluation

Prototype Using Off-the-Shelf Components

- Battery-free
- Harvests and backscatters TV signals at 539 MHz
- Microcontroller performs computation

Tested Locations

Seattle area with a 1MW TV tower at 539 MHz

Indoor and outdoor environments

- Distances up to 10.5 km from the TV tower
 - TV power ranged between -24dBm and -8dBm

What Bit Rates Can We Achieve?

Three bit rates:
 10kbps, 1kbps, 100bps

 BER versus distance between two devices

What Bit Rates Can We Achieve?

These results show the feasibility of Ambient Backscatter

Applications

Identifying Misplaced Items In Grocery stores or Warehouses (e.g., Amazon)

 With ambient backscatter, devices can figure out they are misplaced on their own

We built a preliminary system with cereal boxes

Identifying Misplaced Items

In Grocery stores or Warehouses (e.g., Amazon)

Works even if not all tags are in range of a reader

Conclusion

- We develop
 - The first primitive that enables communication without either device generating RF signals
 - A battery-free hardware prototype that computes and communicates using only TV signals

- We transform existing signals into both a power source and a communication medium
 - Opens up new research opportunities

abc.cs.washington.edu

Powering the next billion devices with Wi-Fi

Vamsi Talla, Bryce Kellogg, Ben Ransford, Saman Naderiparizi, Shyam Gollakota and Josh Smith

University of Washington

Wi-Fi is a great fit for power delivery

Wi-Fi is ubiquitous in indoor environments

Inexpensive given Wi-Fi's economies of scale

Negligible size footprint, reuse 2.4 GHz antenna

Why is this hard?

Wi-Fi is designed for communication and not power delivery

Why is this hard?

Wi-Fi is designed for communication and not power delivery

Why is this hard?

Wi-Fi is designed for communication and not power delivery

Power delivery requires continuous transmission

But, continuous transmissions jam Wi-Fi

UDP connection between Wi-Fi router and a client using iperf

But, continuous transmissions jam Wi-Fi

UDP connection between Wi-Fi router and a client using iperf

Fundamental tradeoff between power delivery and Wi-Fi performance

Power over Wi-Fi

- First system to deliver power to low-power devices using existing Wi-Fi chipsets
 - Imitate continuous transmission without degrading Wi-Fi

 Real world deployment in six homes without significantly degrading network performance

 Built the first Wi-Fi powered temperature sensor, camera, battery charger and USB charger Opportunistic multi-channel transmissions: Imitate continuous transmissions without affecting Wi-Fi network

 Duty cycle aware transmissions: Reduce channels occupancy due to power packet

 Scalable power protocols: Allows to scale with multiple PoWi-Fi routers

Imitate continuous transmission across 3 Wi-Fi channels

Our harvester design efficiently harvests across multiple Wi-Fi channels

- 1500 byte power packet at 54 Mbps with 100 us inter-packet delay
- When queue depth < threshold, add power packets

Set threshold value to prioritize actual traffic and have negligible impact on Wi-Fi performance

UDP connection between Wi-Fi router and a client using iperf

UDP connection between Wi-Fi router and a client using iperf

Cumulative channel occupancy of 97.6%

 Opportunistic multi-channel transmissions: Imitate continuous transmissions without affecting Wi-Fi network

 Duty cycle aware transmissions: Reduce channel occupancy due to power packet

 Scalable power protocols: Allows to scale with multiple PoWi-Fi routers

Duty cycle aware transmissions

Joint non-linear optimization problem between Wi-Fi performance and harvester behavior

Average channel occupancy reduced to 3.3%, a 10x reduction

 Opportunistic multi-channel transmissions: Imitate continuous transmissions without affecting Wi-Fi network

 Duty cycle aware transmissions: Reduce channel occupancy due to power packet

 Scalable power protocols: Allows to scale with multiple PoWi-Fi routers

Scaling with PoWi-Fi routers

TCP throughput of between two Wi-Fi devices in a network

PoWi-Fi design does not scale with number of routers

Solution: Concurrent PoWi-Fi transmissions

Concurrent PoWi-Fi transmissions

TCP throughput of between two Wi-Fi devices in a network

Concurrent PoWi-Fi transmissions

TCP throughput of between two Wi-Fi devices in a network

Our design scales with number of PoWi-Fi routers

 Opportunistic multi-channel transmissions: Imitate continuous transmissions without affecting Wi-Fi network

 Duty cycle aware transmissions: Reduce channel occupancy due to power packet

 Scalable power protocols: Allows to scale with multiple PoWi-Fi routers

Real world deployment in 6 homes

Wi-Fi powered devices

Wi-Fi powered sensors

Battery-free temperature sensor

Battery-free camera

Li-Ion battery charger

NiMH battery charger

Wi-Fi powered temperature sensor

Wi-Fi powered temperature sensor

Wi-Fi Powered Camera

Wi-Fi Powered Camera

Applications of low rate cameras

- Deploy in hard to reach places, e.g., attics
- Integrate with ultra-low power motion detector to trigger camera

Wireless Charging Hotspot

USB charger for wearable devices

0 to 40% charge in 2.5 hours at a distance of 5 cm from a PoWi-Fi router

Conclusion

 First system to deliver power to low-power devices using existing Wi-Fi chipsets

 Real world deployment in six homes without significantly degrading network performance

 Built the first Wi-Fi powered temperature sensor, camera, battery and USB charger

Further Progress

- Extent Ambient Backscatter to a host of protocols:
 - Wi-Fi
 - BLE
 - ZigBee
 - LoRa

Battery-free phones, microphones and cameras

Thank you

vamsi.talla@jeevawireless.com https://jeevawireless.com