DEEP LEARNING

CSE 599 N1: Modern Mobile Systems

modernmobile.cs.washington.edu

Content borrowed from Tianqi Chen, Fei-Fei Li

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0 (assume given set of discrete labels) {dog, cat, truck, plane, ...}

➤ cat

The Problem: Semantic Gap

 $\begin{bmatrix} [185 \ 112 \ 108 \ 111 \ 104 \ 99 \ 106 \ 99 \ 96 \ 103 \ 112 \ 119 \ 104 \ 97 \ 93 \ 87 \end{bmatrix} \\ \begin{bmatrix} 91 \ 98 \ 102 \ 106 \ 104 \ 79 \ 98 \ 103 \ 99 \ 105 \ 123 \ 136 \ 110 \ 105 \ 94 \ 85 \end{bmatrix} \\ \begin{bmatrix} 90 \ 81 \ 81 \ 93 \ 122 \ 128 \ 128 \ 87 \ 96 \ 95 \ 99 \ 115 \ 112 \ 106 \ 103 \ 99 \ 85 \end{bmatrix} \\ \begin{bmatrix} 99 \ 81 \ 81 \ 93 \ 120 \ 131 \ 127 \ 100 \ 95 \ 98 \ 102 \ 99 \ 96 \ 93 \ 101 \ 94 \end{bmatrix} \\ \begin{bmatrix} 106 \ 91 \ 61 \ 64 \ 69 \ 91 \ 88 \ 85 \ 101 \ 107 \ 109 \ 98 \ 75 \ 84 \ 96 \ 95 \end{bmatrix} \\ \begin{bmatrix} 114 \ 108 \ 95 \ 55 \ 55 \ 56 \ 96 \ 64 \ 54 \ 64 \ 87 \ 112 \ 129 \ 98 \ 74 \ 84 \ 96 \ 95 \end{bmatrix} \\ \begin{bmatrix} 113 \ 137 \ 147 \ 103 \ 65 \ 81 \ 80 \ 65 \ 52 \ 54 \ 67 \ 84 \ 102 \ 93 \ 85 \ 82 \end{bmatrix} \\ \begin{bmatrix} 128 \ 137 \ 147 \ 103 \ 65 \ 81 \ 80 \ 65 \ 52 \ 54 \ 77 \ 84 \ 102 \ 93 \ 85 \ 82 \end{bmatrix} \\ \begin{bmatrix} 128 \ 137 \ 147 \ 103 \ 65 \ 81 \ 80 \ 65 \ 57 \ 57 \ 80 \ 65 \ 54 \ 64 \ 72 \ 98 \end{bmatrix} \\ \begin{bmatrix} 127 \ 125 \ 131 \ 147 \ 133 \ 127 \ 126 \ 131 \ 111 \ 94 \ 69 \ 75 \ 61 \ 64 \ 72 \ 84 \end{bmatrix} \\ \begin{bmatrix} 115 \ 114 \ 109 \ 123 \ 156 \ 148 \ 131 \ 118 \ 113 \ 109 \ 106 \ 92 \ 74 \ 65 \ 72 \ 78 \end{bmatrix} \\ \begin{bmatrix} 89 \ 93 \ 99 \ 97 \ 80 \ 65 \ 54 \ 64 \ 72 \ 81 \end{bmatrix} \\ \begin{bmatrix} 89 \ 93 \ 99 \ 97 \ 80 \ 97 \ 80 \ 65 \ 54 \ 64 \ 72 \ 84 \end{bmatrix} \\ \begin{bmatrix} 89 \ 93 \ 99 \ 97 \ 108 \ 147 \ 131 \ 118 \ 113 \ 110 \ 106 \ 92 \ 74 \ 65 \ 72 \ 78 \end{bmatrix} \\ \begin{bmatrix} 89 \ 93 \ 99 \ 97 \ 80 \ 97 \ 80 \ 77 \ 80 \ 107 \ 117 \ 125 \ 131 \ 117 \ 125 \ 131 \ 117 \ 125 \ 131 \ 117 \ 125 \ 131 \ 117 \ 125 \ 131 \ 117 \ 125 \ 131 \ 117 \ 125 \ 130 \ 115 \ 87 \end{bmatrix} \\ \begin{bmatrix} 62 \ 65 \ 82 \ 89 \ 78 \ 71 \ 80 \ 101 \ 124 \ 126 \ 119 \ 101 \ 107 \ 114 \ 131 \ 119 \end{bmatrix} 16 \ 65 \ 75 \ 88 \ 89 \ 71 \ 82 \ 89 \ 71 \ 82 \ 81 \ 126 \ 113 \ 116 \ 105 \ 107 \ 92 \ 94 \ 107 \ 114 \ 111 \ 118 \ 113 \ 116 \ 116 \ 107 \ 116$

What the computer sees

An image is just a big grid of numbers between [0, 255]:

e.g. 800 x 600 x 3 (3 channels RGB)

This image by Nikita is licensed under CC-BY 2.0

Distance Metric to compare images

L1 distance:
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$

T	test image					training image				pixe	pixel-wise absolute value differences				
	56	32	10	18		10	20	24	17		46	12	14	1	
	90	23	128	133		8	10	89	100		82	13	39	33	add
	24	26	178	200	-	12	16	178	170	=	12	10	0	30	→ 456
	2	0	255	220		4	32	233	112		2	32	22	108	

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat

car

frog

A loss function tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

Loss over the dataset is a sum of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

12.9

2.9

Losses:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

L = (2.9 + 0 + 12.9)/3
= 5.27

Regularization

 λ = regularization strength (hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{(V)}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Simple examples

L2 regularization: $R(W) = \sum_{k} \sum_{l} W_{k,l}^2$ L1 regularization: $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$ Elastic net (l 1 + l 2): $R(W) = \sum_{k} \sum_{l} \beta W^2$ +

More complex:

Dropout

Batch normalization

Elastic net (L1 + L2): $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$ Stochastic depth, fractional pooling, etc

Regularization

 $\lambda =$ regularization strength (hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{\swarrow}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Why regularize?

- Express preferences over weights
- Make the model simple so it works on test data
- Improve optimization by adding curvature

Softmax Classifier (Multinomial Logistic Regression)

Neural networks: without the brain stuff

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ or 3-layer Neural Network

 $f=W_3\max(0,W_2\max(0,W_1x))$

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Elements of Machine Learning

Model

$$\hat{y}_i = \begin{bmatrix} \text{feature}_0 \\ \text{feature}_1 \\ \dots \\ \text{feaure}_m \end{bmatrix} \quad \hat{y}_i = \frac{1}{1 + \exp\left(-w^T x_i\right)}$$

$$L(w) = \sum_{i=1}^n l(y_i, \hat{y}_i) + \lambda \|w\|^2$$

Objective

$$L(w) = \sum_{i=1}^{n} l(y_i, \hat{y}_i) + \lambda ||w||^2$$

Training

$$w \leftarrow w - \eta \nabla_w L(w)$$

What's Special About Deep Learning

End to End Training

Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

def train(images, labels):
 # Machine learning!
 return model

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

Example training set

Fully Connected Layer

 $h_i = \sum_{j=1}^5 W_{ij} x_i \qquad \qquad h_1 = W_{11} x_1 + W_{21} x_2 + W_{31} x_3 + W_{41} x_4 + W_{51} x_5$

Convolution = Spatial Locality + Sharing

Without Sharing

With Sharing

$$h_{i} = W_{1,i}x_{i-1} + W_{2,i}x_{i} + W_{3,i}x_{i+1}$$
$$h_{i} = W_{1}x_{i-1} + W_{2}x_{i} + W_{3}x_{i+1}$$

Convolution with Multiple Channels

Filter W1 (3x3x3)	Output Volume (3x3x2)						
w1[:,:,0]	0[:,:,0]						
0 0 -1	4 0 4						
-1 0 -1	6 7 7						
-1 0 -1	1 -2 7						
w1[:,:,1]	0[:,:,1]						
1 -1 1	-1 -7 -1						
0 1 0	-2 -8 -2						
-1 1 0	-2 1 -2						
w1[:,:,2]							
-1 0 1							
0 0 0							
-1 0 -1							
Bias b1 (1x1x1)							
bl[:,:,0]							
0							

toggle movement

Source: http://cs231n.github.io/convolutional-networks/

Pooling Layer

Can be replaced by strided convolution

Challenges: From LeNet to AlexNet

1.2 million images with 1000 categories

- Need much more data: ImageNet
- A lot more computation burdens: GPU
- Overfitting prevention
 - Dropout regularization
- Stable initialization and training
 - Explosive/vanishing gradient problems
 - Requires careful tuning of initialization and data normalization

ReLU Unit

- ReLU y = max(x, 0)
- Why ReLU?
 - Cheap to compute
 - It is roughly linear..

Dropout Regularization

- Randomly zero out neurons with probability 0.5
- During prediction, use expectation value (keep all neurons but scale output by 0.5)

Vanishing and Explosive Value Problem

- Imagine each layer multiplies Its input by same weight matrix
 - W > 1: exponential explosion
 - W < 1: exponential vanishing

- In ConvNets, the weight are not tied, but their magnitude matters
 - Deep nets training **was** initialization sensitive

Batch Normalization: Stabilize the Magnitude

- Subtract mean
- Divide by standard deviation
- Output is invariant to input scale!
 - Scale input by a constant
 - Output of BN remains the same
- Impact
 - Easy to tune learning rate
 - Less sensitive initialization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation *x* over a mini-batch.

Setting Hyperparameters

Your Dataset

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

Understanding what a neural network has learned

What's going on inside ConvNets?

This image is CC0 public domain

Class Scores: 1000 numbers

Input Image: 3 x 224 x 224

First Layer: Visualize Filters

AlexNet: 64 x 3 x 11 x 11

Krizhevsky, "One weird trick for parallelizing convolutional neural networks", arXiv 2014 He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Huang et al, "Densely Connected Convolutional Networks", CVPR 2017

Last Layer: Dimensionality Reduction

Visualize the "space" of FC7 feature vectors by reducing dimensionality of vectors from 4096 to 2 dimensions

Simple algorithm: Principal Component Analysis (PCA)

More complex: t-SNE

Maximally Activating Patches

Pick a layer and a channel; e.g. conv5 is 128 x 13 x 13, pick channel 17/128

Run many images through the network, record values of chosen channel

Visualize image patches that correspond to maximal activations

Springenberg et al, "Striving for Simplicity: The All Convolutional Net", ICLR Workshop 2015 Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

Which pixels matter: Saliency vs Occlusion

Mask part of the image before feeding to CNN, check how much predicted probabilities change

P(elephant) = 0.95

P(elephant) = 0.75

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

Boat image is CC0 public domain Elephant image is CC0 public domain Go-Karts image is CC0 public domain

Which pixels matter: Saliency vs Occlusion

Mask part of the image before feeding to CNN, check how much predicted probabilities change

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

Boat image is CC0 public domain Elephant image is CC0 public domain Go-Karts image is CC0 public domain

African elephant, Loxodonta africana

0.98

0.96

0.90

Transfer learning

Transfer learning (fixed feature extractor)

Too costly to train your own CNN (2-3 weeks on GPUs)

Use a CNN pretrained on ImageNet and adapt it to your own dataset

Final layer of CNN is a 'dense' layer with # of nodes == # of classes (1000 for ImageNet)

Remove final layer, replace with Dense layer with your # of nodes, with a softmax activation

Transfer learning (fine-tuning)

Fine-tune the weights of the n-1th convolution layer

Earlier layers encode most abstract features, lines, edges etc.

Later layers are biased towards correctly classifying the ImageNet dataset

Model Zoo

https://github.com/BVLC/caffe/wiki/Model-Zoo

Model Zoo

Aswin Shanmugam Subramanian edited this page 4 days ago · 120 revisions

Check out the model zoo documentation for details.

To acquire a model:

- download the model gist by ./scripts/download_model_from_gist.sh <gist_id> <dirname> to load the model metadata, architecture, solver configuration, and so on. (<dirname> is optional and defaults to caffe/models).
- download the model Weights by ./scripts/download_model_binary.py <model_dir> Where <model_dir> is the gist directory from the first step.

or visit the [model zoo documentation] (http://caffe.berkeleyvision.org/model_zoo.html) for complete instructions.

Table of Contents

- · Berkeley-trained models
- Network in Network model
- Models from the BMVC-2014 paper "Return of the Devil in the Details: Delving Deep into Convolutional Nets"
- Models used by the VGG team in ILSVRC-2014
- · Places-CNN model from MIT.
- · GoogLeNet GPU implementation from Princeton.
- · Fully Convolutional Networks for Semantic Segmentation (FCNs)
- CaffeNet fine-tuned for Oxford flowers dataset
- CNN Models for Salient Object Subitizing.
- Deep Learning of Binary Hash Codes for Fast Image Retrieval
- Places_CNDS_models on Scene Recognition
- Models for Age and Gender Classification.
- GoogLeNet_cars on car model classification
- ParseNet: Looking wider to see better
- SegNet and Bayesian SegNet
- Conditional Random Fields as Recurrent Neural Networks
- Holistically-Nested Edge Detection
- CCNN: Constrained Convolutional Neural Networks for Weakly Supervised Segmentation
- Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary
 Patterns
- Facial Landmark Detection with Tweaked Convolutional Neural Networks
- Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.713	0.901	138,357,544	23
VGG19	549 MB	0.713	0.900	14 <mark>3,667,24</mark> 0	26
ResNet50	99 MB	0.749	0.921	25,636,712	168
InceptionV3	92 MB	0.779	0.937	23,851,784	159
InceptionResNetV2	215 MB	0.803	0.953	55,873,736	572
MobileNet	16 MB	0.704	0.895	4,253,864	88
MobileNetV2	14 MB	0.713	0.901	3,538,984	88
DenseNet121	33 MB	0.750	0.923	8,062,504	121
DenseNet169	57 MB	0.762	0.932	14,307,880	169
DenseNet201	80 MB	0.773	0.936	20,242,984	201
NASNetMobile	23 MB	0.744	0.919	5,326,716	-
NASNetLarge	343 MB	0.825	0.960	88,949,818	

Health applications

Dermatologist-level classification of skin cancer with deep neural ... https://www.nature.com > letters

by A Esteva - 2017 - Cited by 1211 - Related articles

Jan 25, 2017 - a, The **deep learning** CNN outperforms the average of the **dermatologists** at **skin cancer classification** using photographic and dermoscopic images. Our CNN is tested against at least 21 **dermatologists** at keratinocyte carcinoma and **melanoma** recognition. ... The CNN outputs a malignancy probability P per image.

You've visited this page 3 times. Last visit: 11/18/18

a. Malignant Melanocytic Lesion

b. Malignant Epidermal Lesion

- c. Malignant Dermal Lesion

d. Benign Melanocytic Lesion

e. Benign Epidermal Lesion

f. Benign Dermal Lesion

g. Inflammatory Condition

h. Genodermatosis

i. Cutaneous Lymphoma

hemangioma	0.68	0.05	0.06	0.13	0.04	0.01	0.02	0.00	0.00
pyogenic	0.00	0.96	0.00	0.00	0.01	0.00	0.00	0.00	0.00
بenous+glomuvenous	0.05	0.01	0.84	0.06	0.01	0.02	0.00	0.00	0.00
다 capillary+sturge weber	0.09	0.00	0.04	0.83	0.01	0.02	0.00	0.00	0.00
spider angioma	0.00	0.01	0.00	0.00	0.91	0.01	0.04	0.02	0.00
puno spider angioma lymphatic	0.02	0.01	0.06	0.01	0.01	0.84	0.06	0.01	0.01
ت atopic	0.01	0.00	0.01	0.04	0.05	0.01	0.85	0.03	0.00
milia	0.00	0.00	0.00	0.00	0.01	0.00	0.02	0.97	0.00
nevus	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.97
	hemangioma	pyogenic	venous+glomuvenous	capillary+sturge weber	spider angioma	lymphatic	atopic	milia	nevus
				P	redicte	d			

Deep learning for wireless networks

Lora, Sigfox, NB-IoT

Long range + can be decoded BELOW the noise floor Lora range: > 10 miles No MAC protocols yet! Lora, Sigfox and Z-wave are proprietary (unlike Wi-Fi)

Dimensionality reduction SNR=-10

SNR=-30

Machine learning underneath the noise floor

Keras tutorial

Inputs

Grayscale image: (200,100)

RGB image: (200,100,3)

Batch of RGB images: (256,200,100,3)


```
batch_size = 128
num_classes = 10
epochs = 12
```

```
# input image dimensions
img_rows, img_cols = 28, 28
```

```
# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)
```

```
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x test /= 255
# convert class vectors to binary class matrices
```

```
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
```

```
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu',
                 input shape=input shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num classes, activation='softmax'))
model.compile(loss=keras.losses.categorical crossentropy,
              optimizer=keras.optimizers.Adadelta(),
              metrics=['accuracy'])
epochs=1000
 for e in range(epochs):
    model.fit(xtrain, ytrain,
               shuffle=False, epochs=1,
               batch size=256,
               validation data=(xval,yval))
#
     checkpointing
     if e%10==0:
         model.save('traintop-'+str(e)+'-'+str(e)+'.h5')
```

xtrain = np.load(direc+'bottleneck-train-'+str(experimentNumber)+'-'+str(validationFold)+'-0.npy')
ytrain = np.load(direc+'ytrain-'+str(experimentNumber)+'-'+str(validationFold)+'-0.npy')

```
i = Input(shape=xtrain.shape[1:])
a = Flatten(name='a1')(i)
a= Dense(256, activation='relu',name='a2')(a)
a = Dropout(0.6,name='a3')(a)
o = Dense(ytrain.shape[1], activation='softmax',name='a4')(a)
model = Model(inputs=i,outputs=o)
```

```
print (model.summary())
```

```
epochs=1000
for e in range(epochs):
    for batch_counter in range(trains):
        batch_num=batch_counter
        fname=direc+'bottleneck-train-'+str(experimentNumber)+'-'+str(validationFold)+'-'+str(batch_num)+'.npy'
        fname2=direc+'ytrain-'+str(experimentNumber)+'-'+str(validationFold)+'-'+str(batch_num)+'.npy'
        xtrain = np.load(fname)
        ytrain = np.load(fname2)
        print (str(batch_counter)+'/'+str(trains-1))
        print (xtrain.shape,ytrain.shape)
        model.fit(xtrain, ytrain,batch size=128)
```

if e%10==0:

model.save(direc+'traintop-'+str(experimentNumber)+'-'+str(validationFold)+'-'+str(e)+'.h5')

Deploying to phone

Select image

Select image

Select image

In contion 1/2

MyModel

MyModel

MyModel

Select image

Incontion 1/2

Load in the .h5 model file

from keras.applications.inception_v3 import InceptionV3
from keras.layers import Dense, Flatten, Dropout
from keras.models import Model

base_model = InceptionV3(include_top=False, weights='imagenet', input_shape=(299,299,3))

```
i = base_model.output
a = Flatten(name='a1')(i)
a = Dense(256,activation='relu',name='a2')(a)
a = Dropout(.6,name='a3')(a)
o = Dense(9, activation='softmax',name='a4')(a)
model = Model(inputs=base_model.input, outputs=o)
```

model.load_weights('traintop-4-1-80.h5',by_name=True)

Convert to .mlmodel file

```
class labels=['Hemangioma','Pyogenic Granuloma','Venous Malformation','Capillary Malformation',
              'Spider Angioma', 'Lymphatic Malformation', 'Atopic Dermatitis', 'Milia', 'Nevus']
import coremltools
coreml model = coremltools.converters.keras.convert(
    model.
    input names="image",
    image input names="image",
    image scale=1/127.5,
    red bias=-1.0,
    green bias=-1.0,
    blue bias=-1.0,
    class labels=class labels,
```

coreml_model.save('VA.mlmodel')

VAmmodel A Type Neural Network Classifier AppDelegate.swift Size 221.5 MB Location ViewController.swift M Author unknown Full Path Users/justinkwoklancha Full Path		₽ B	< > 🤷 VA > 🛅 VA >	VA.mlmodel			< 🛆 >	<u></u>
▼ Name VA ● Naminood Name ● AppDelegate.swift Size ● AppDelegate.swift Size ● ViewController.swift Main.storyboard ● Main.storyboard Main.storyboard ● LaunchScreen.storyboard Description ● Info.plist Model Class • Wodel Class ● With Valurests Model Class • Model Class ● Model Class ● Model Class • Model Class ● Model Class ● Model Class • Model Class ● Model Class ● Model Class • Model Class ● Model Class ● Model Class • Model Class ● Model Class ● Model Class • Model Class ● Model Class ● Model Class • Model Class ● Model Class ● Model Class • Model Class • Mo	🛓 VA	М	Washing Learning M	adal				Identity and Type
in deglodin/3. minodel A AppDelegate.swift AppDelegate.swift AppDelegate.swift AppDelegate.swift AppDelegate.swift Author unknown Author unknown Description not included Description not included License unknown ClaunchScreen.storyboard Mino.plist Motests.swift	VA 🔜							Name VA.mlmodel
 AppDelegate swift AppColegate swift AppColegate swift ViewController.swift Main.storyboard Assets.xcasets Locenic description description description description description description Locenic description Model Class Mot	Inceptionv3.mlmodel	A						Type Default - CoreML Model
Appleiegate swift Appleiegate swift Appleiegate swift Author unknown Mainstoryboard Assets.xcassets License unknown License unknown License unknown Model Class Wodel Class Wod	VA.mlmodel	A			sifier			Location Relative to Group
ViewController.swift M Main.storyboard M Description description not included License unknown Description description not included License unknown ClaunchScreen.storyboard Model Class VATests VATests VATests.swift Model Class VAUITests <p< td=""><td>AppDelegate.swift</td><td></td><td>Size</td><td>221.5 MB</td><td></td><td></td><td></td><td></td></p<>	AppDelegate.swift		Size	221.5 MB				
Main.storyboard M Assets.xcassets License Assets.xcassets License Info.plist M Model Class VA © Model Class Localization Model Evaluation Permeters Localization Model Evaluation Permeters Model Class			Author	unknown				
Lidense dirition Lidense dirition Lidense dirition Info.plist VATests.swift Info.plist VAUTests.swift Info.plist VAUTests Info.plist VAUTests Info.plist VAUTests Info.plist VAUTests Info.plist Valutests Info.plist Info.plist<		м	Description	description not includ	ded			Desktop/VA/VA/VA.mlmodel
Class VAUTests.swift VAUTes			License	unknown				
VATests VATests.swift Info.plist VAUITests VAUITests.swift VAUITests VAUITests.swift VAUITests.swift Nodel Evaluation Parameters Vauitest Name Type Description Info.plist Vauitests Name Type Info.plist Info.plist Info.plist Vauitests Info.plist Vauitests Info.plist								
VATests VATests VATests.swift Info.plist VAUTests.swift VAUTests.swift VAUTests.swift VAUTests.swift Info.plist Model Evaluation Parameters Model Evaluation Parameters Model Evaluation Parameters Model Evaluation Parameters Info.plist Model Evaluation Parameters Info.plist Info.p		м	Model Class					Only resources are taggable
Info.plist VAUITests VAUITests.swift VAUITests.swift Info.plist Model Evaluation Parameters Model Evaluation Pa								Localization
VAUITests VAUITests VAUITests.swift Info.plist Model Evaluation Parameters Name Type Description VAUITests Info.plist Name Type Description VAUITests Info.plist Name Type Description VAUITests Info.plist Name Type Description VAUITests VAUITests Info.plist Name Type Description VAUITests VAUITests VAUITests Info.plist Name Type Description VAUITests VAUITests			_					
VAUITests.swift Info.plist Model Evaluation Parameters Target Membership Info.plist Info.plis				Automatically genera	ted Swift model class	Localize		
Info.plist ► Products Model Evaluation Parameters Name Type Description Image						Target Membership		
Name Type Description Image Image (Color 299 x 299) ✓ VAUITests Outputs ✓ Outputs output1 Dictionary (String → Double)			The del Fusivetien De					🗹 À VA
Name Type Description ▼Inputs image Image (Color 299 x 299) ▼Outputs output1 Dictionary (String → Double)			Model Evaluation Pai	rameters				VATests
imageImage (Color 299 x 299)▼Outputsoutput1Dictionary (String → Double)	Products			Name	Туре	Description		VAUITests
imageImage (Color 299 x 299)▼Outputsoutput1Dictionary (String → Double)				▼ Inputs				
▼Outputs output1 Dictionary (String → Double)					Image (Color 299	x 299)		
output1 Dictionary (String → Double)					inage (color 200	. 200)		
					Dictionary (String	→ Double)		
				Glaborabon	oung			

```
func classify(image: CIImage) {
   let model:VNCoreMLModel = getmodel()
   let request = VNCoreMLRequest(model: model) { [weak self] request, error in
       guard let results = request.results as? [VNClassificationObservation],
            let topResult = results.first else {
                fatalError("unexpected result type from VNCoreMLRequest")
        }
       for i in 0...<9 {
            print("\(results[i].identifier) \(results[i].confidence)")
        }
       DispatchQueue.main.async { [weak self] in
            let t = (self?.counter)!
            self?.answerLabel.text = "\(t)\n\(Int(topResult.confidence * 100))% it's \(topResult.identifier)"
       }
    }
   request.imageCropAndScaleOption = .centerCrop
```

```
let handler = VNImageRequestHandler(ciImage: image)
DispatchQueue.global(qos: .userInteractive).async {
    do {
        try handler.perform([request])
        } catch {
            print(error)
        }
}
```

}

```
func readimg() -> CIImage? {
    let filePath = Bundle.main.resourcePath!+"/tree.png"
    do {
        let image = UIImage(contentsOfFile: filePath);
        guard let ciImage = CIImage(image: image!) else {
            fatalError("couldn't convert UIImage to CIImage")
        }
        return ciImage
    }
```