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We present HemaApp, a smartphone application that 
noninvasively monitors blood hemoglobin concentration 
using the smartphone’s camera and various lighting sources. 
Hemoglobin measurement is a standard clinical tool 
commonly used for screening anemia and assessing a 
patient’s response to iron supplement treatments. Given a 
light source shining through a patient’s finger, we perform a 
chromatic analysis, analyzing the color of their blood to 
estimate hemoglobin level.  We evaluate HemaApp on 31 
patients ranging from 6 – 77 years of age, yielding a 0.82 
rank order correlation with the gold standard blood test. In 
screening for anemia, HemaApp achieve a sensitivity and 
precision of 85.7% and 76.5%. Both the regression and 
classification performance compares favorably with our 
control, an FDA-approved noninvasive hemoglobin 
measurement device. We also evaluate and discuss the effect 
of using different kinds of lighting sources.  
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Hemoglobin; Mobile Health; Photoplethysmography; 
Anemia; Camera; Blood Screening 
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H.5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

#
��$%&��#$
	
Smartphone-based medical devices have grown increasingly 
common for heartrate monitoring [8,9,14], pulmonology 
[15], sleep monitoring [17], point-of-care diagnostics [23], 
and a variety of telemedicine systems [10,27]. They 
demonstrate how the computing, telemetry, and sensing 
capability of modern smartphones make them excellent 

candidates for clinical and remote healthcare platforms. A 
number of applications have even leveraged only the existing 
sensors on a smartphone to achieve results similar to those 
from medical devices (e.g., the microphone [15] and camera 
[7–9,14]). However, there has been little work on performing 
non-invasive blood screening on a smartphone. Most related 
work focuses on blood oxygen saturation. In this paper, we 
present the design and evaluation of a noninvasive technique 
for sensing hemoglobin levels using an unmodified 
smartphone camera. By leveraging the absorption properties 
of hemoglobin and blood plasma at multiple wavelengths of 
light, our system, HemaApp, can measure hemoglobin 
concentrations with no augmentation of the phone hardware 
and can be further improved with minimal augmentation.  

Hemoglobin is the protein molecule in the blood that carries 
oxygen throughout the body. Conceptually, the measure of 
hemoglobin is a representation of the oxygen carrying 
capacity of the patient’s blood. This is distinct from oxygen 
saturation, which measures the oxygen carrying efficiency of 
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Figure 1: HemaApp is a smartphone application that 
noninvasively estimates blood hemoglobin concentration using
a smartphone camera. Analysis of the color of the blood in a 
user’s finger yields an estimate of the user’s hemoglobin level.
We evaluated the system using the smartphone’s LED flash and
incandescent light bulbs as illuminating sources. 
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the blood. Currently, options to monitor hemoglobin include 
a full blood analysis using a complete blood count (CBC) [6], 
blood analysis using a finger prick [20], or optical 
measurements through the finger using a specialized finger 
probe [1,16,18,24]. Noninvasive measurement is desirable 
for both sanitation and ease of use when measuring 
frequently because it avoids puncturing the skin. A blood-
screening tool based on unmodified smartphones has the 
added advantage of being easily deployable and enables 
previously unconsidered treatment management options 
given the lack of such technology. For example, HemaApp 
can help community health workers in developing countries 
screen for iron-deficient anemia caused by malnutrition. A 
major barrier for these health workers is the number of 
medical tools they need to transport with them on foot for 
each test. A smartphone is now standard equipment used for 
telemetry of records; as such, a smartphone-based solution 
helps reduce the burden on these workers and reduces the 
cost of equipment. Beyond improved deployability in remote 
areas, the reuse of smartphones also aids people being treated 
for cases of anemia and need to monitor their condition at 
home. Often, these patients are treated with iron supplements 
and return to the hospital for a blood test every few weeks to 
ensure their treatment is effective. A smartphone hemoglobin 
test is convenient for at-home monitoring and does not 
require a patient to purchase a specialized blood testing 
device that costs hundreds to thousands of dollars. This 
allows both the patient and the doctor to track the 
effectiveness of these treatments much more easily and 
frequently. This can help early detection of any ineffective 
treatment leading to complications. Lastly, the ability to 
measure hemoglobin noninvasively is useful for measuring 
hemoglobin more frequently even in a clinical setting. For 
example, sickle cell patients often suffer from extreme 
anemia and need frequent monitoring. However, due to 
treatment to suppress their production of sickled cells, their 
veins are often hardened, making blood draw difficult [4].  

Our system enables hemoglobin measurement through a 
chromatic analysis of the blood at the user’s fingertip by 
measuring the absorption properties of the blood at different 
wavelengths of light. This is achieved by using the RGB 
camera with different light sources illuminating the fingertip. 
We evaluate three different hardware embodiments that vary 
the level of hardware augmentation necessary (Figure 2): (1) 
white flash + infrared emitter, (2) white flash + infrared 
emitter + incandescent lamp, and (3) white flash + custom 
infrared led array. Most smartphone cameras have a white 
LED, and many smartphones have started to introduce IR 
emitters for autofocus, potentially making the first 
embodiment augmentation free. The second embodiment 
requires a low overhead modification by introducing an 
incandescent lamp for an additional IR spectrum. The third 
embodiment requires the most hardware augmentation by 
introducing a custom array of LEDs as a phone case.  

 
Figure 2: Three embodiments of HemaApp in increasing 
hardware augmentation.  

Our research team includes experienced hematologists and 
pediatricians who help conduct a clinical study with 31 
patients. The study population includes a wide spread of 
hemoglobin levels (8 – 16 g/dL), an age spread from 6 to 77 
years old, and included skin tones ranging from pale to dark 
skin. This demographic spread is in-line with initial 
feasibility studies done for other noninvasive hemoglobin 
measurement devices [13,19]. We find that the combination 
of incandescent and LEDs gives the best estimation accuracy 
of ±1.26 g/dL (R = 0.82). As a comparison, the Masimo 
Pronto, an FDA-approved optical hemoglobin measurement 
device, achieves an accuracy of ±1.28 g/dL (R = 0.81).  

The main contribution of this paper is a demonstration that a 
smartphone camera can be used in estimating hemoglobin 
concentrations noninvasively with minimal augmentation 
with a few commonly available light sources. This 
contribution comes in three parts: (1) an algorithm to 
estimate hemoglobin using a combination of broadband and 
narrowband light source; (2) a comparison of the hemoglobin 
estimation with a clinical blood draw and another 
noninvasive optical hemoglobin measurement system; and 
(3) a performance analysis of hemoglobin estimation when 
different combinations of light sources are used. 
 

�'(��'%	)$��	
The ubiquity of smartphones has lowered the access barrier 
to computing, telemetry, and the sensors needed to enable 
medical and health care data for non-clinical settings. Prior 
work in this new space has inspired the development and 
design of HemaApp. We divide our summary of related 
works into three sections: smartphone-based sensing, camera 
as a hematology sensor, and hemoglobin measurement. 
 

����������	�����	������	
There are currently three ways in which medical devices 
integrate smartphones into their systems: with a self-
contained attachment that digitally communicates with the 
phone, with an attachment that supports and uses the phone’s 
built-in sensors for measurement, and with an app using only 
the phone’s built-in hardware to process the specimen.  

Self-contained attachments are medical devices that have all 
the necessary hardware to perform the medical analysis, but 
use the phone as a hub to control the device, receive data, 
store data, and potentially send data to an outside database 
for access by hospitals and doctors [25]. This model is 
gaining popularity in almost all commercial products for 
personal health monitoring systems like blood pressure 
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monitors [30] and glucose implants [31], often using 
Bluetooth as the communication method.  

Another class of devices uses supplemental hardware in 
addition to the smartphone. One such example is an 
attachment that mechanically couples a stethoscope head to 
a 3D printed attachment that directs the sound to the 
smartphone’s microphone [23]. More complex attachments, 
such as an optics system that illuminates a flow cytometer 
test strip, can be attached to a smartphone camera to perform 
point of care blood tests [28]. The optics system helps to 
illuminate the strip with the needed wavelength, the test strip 
provides the needed chemical reaction to bind to the proteins 
and compounds of interest in the blood specimen, and the 
smartphone camera acts as the sensor. The advantage of such 
systems is that attachments can be tailored to specific tasks 
(e.g., chemical reaction, illumination, mechanical 
amplification), and the sensor of the smartphone can be 
reused for various purposes and recorded onto the phone.  

The last class of systems uses only what is on the 
smartphone. Researchers have explored various ways to 
monitor respiratory ailments through spirometry [15] and 
auscultation [23] using the smartphone’s microphone. Sleep 
disorders like sleep apnea have been successfully monitored 
using a combination of speaker and microphone on a 
smartphone  as a sonar to detect breathing [17]. The camera 
has been used to map melanoma and skin lesion [29]. By 
only using typical hardware on a smartphone, such systems 
have an advantage in terms of being immediately deployable 
through software, making these systems attractive for mass 
deployment due to their ease of installation and low cost.  
 

������	��	�	��������� 	������	
Most relevant to our work is the use of smartphone cameras 
to noninvasively perform blood analysis. In particular, this 
type of work relies on the fact that various compounds in the 
blood produce coloration differences under different 
concentrations. BiliCam is a system that measures bilirubin, 
a compound in the blood that is important to monitor during 
the first few days of a newborn’s life [7]. This system 
measures the yellowness of the skin in order to compute the 
concentration of bilirubin, using a sheet of white paper for 
color balancing. Similar to this work is a student project 
called Eyenaemia [22], which uses a color calibration card 
placed next to the eyelid of a patient, and measures the 
redness of the underside of their eyelid when flipped over. In 
this case, the concentration of hemoglobin, which is 
responsible for the red coloration of the blood, affects the red 
absorption. Our system follows a similar intuition as 
Eyenaemia, but measures the coloration of the blood at the 
fingertip. More importantly, Eyenaemia also only focuses on 
detecting the risk of anemia, but cannot estimate the actual 
concentration of hemoglobin as in the case of our approach. 
Various research projects have also explored the use of 
smartphone cameras with their IR filter removed to perform 
                                                             
1 http://www.hemocue.com/en/solutions/hematology 

pulse oximetry, using a custom set of red and infrared LEDs 
to illuminate the finger tip of a patient and the camera to 
measure the pulse at the finger under different illuminations 
[8,11,12,21]. Our work builds upon the insights from these 
works in the use of smartphone cameras to detect infrared 
light, but focuses on not modifying the smartphone camera; 
instead, we explore multiple ways to illuminate the fingertip, 
ranging from lighting sources commonly available on 
smartphones to incandescent lighting for a broad spectrum. 
 

���������	"����������	
Unlike pulse oximetry, which compares the ratio of 
oxygenated hemoglobin to deoxygenated hemoglobin, 
hemoglobin measurement needs to measure all forms of 
hemoglobin in reference to the blood plasma.  

Clinically adopted methods to measure hemoglobin are 
currently restricted to blood tests. In a lab test, a technician 
draws about 3mL of blood for a complete blood count 
(CBC). In a CBC, information about red blood cells (RBC), 
white blood cells (WBC), and platelets are measured 
electronically. The hemoglobin concentration is measured 
optically after the blood is mixed with a chemical agent that 
changes the solution’s density proportionally to the 
concentration of hemoglobin. For tests that only require a 
hemoglobin concentration result, such as those for screening 
during blood donations, a point of care (PoC) device is often 
used instead of the more time consuming CBC. An example 
of a PoC is the HemoCue1 device. The HemoCue requires a 
finger prick to draw a small amount of blood; using a 
microcuvette that draws blood and mixes it with a chemical 
reagent on a test panel, a result can be determined in a 
minute. This method has been shown to have a rank order of 
0.89 at a mean accuracy of ±0.5 g/dL when compared to 
results from a CBC test [5,20].  

Most recently, noninvasive measurement of the hemoglobin 
concentration through optical measurement of the blood at 
the fingertip has been developed. Alam et al. has created a 
finger probe with 6 LEDs that cover multiple wavelengths in 
the red to IR spectrum (630, 660, 680, 770, 880 and 1300nm) 
to measure the hemoglobin to water ratio in blood plasma 
[1,2]. Kraitl et al. conducted a 41 people study using a three 
LED (670, 810, 1300nm) finger probe, and found similar 
success. Timm et al. based their technique off of Kraitl et 
al.’s system to create a device called OxyTrue Hb®. A 
commercially available system developed by Masimo is 
similar to Alam et al.’s system, but instead incorporates 7 
LEDs and uses a proprietary algorithm [16]. Validation of 
this system has shown a mean accuracy of ± 1.0 g/dL [16,18]. 
We draw from these existing works for noninvasive 
hemoglobinometry in our design of the lighting sources we 
incorporated in our study. The aim for our system is to 
provide a similar level of accuracy, but reusing the hardware 
of a smartphone to make the system more easily deployable.  
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HemaApp is the only noninvasive hemoglobin measurement 
system that leverages the camera of the smartphone to 
perform similar measurements as the Masimo Pronto and 
other finger probe systems, utilizing non-LED sources to 
remove the need for custom hardware.   

�'"��**	
Figure 3 shows the HemaApp system, consisting of hardware 
components that record data which are processed by an 
algorithm to calculate the hemoglobin concentration. The 
following hardware section describes the choice of light 
wavelengths and the phone application that controls the 
lights and records the light reflected from the finger to the 
camera. The data obtained by the phone app are a series of 
videos for each light source. The algorithm section describes 
the process of converting the series of video recordings to 
RGB time series waveform and the physical intuition behind 
the machine learning features used in the hemoglobin 
estimation.  
 

����!���	
Due to the limited access to low level hardware control of the 
phone, we choose to develop a hardware add-on to provide 
the lights for hemachrome analysis. However, unlike other 
noninvasive optical hemoglobin measurement systems, we 
limit the lights we choose to ones that can be commonly 
found on smartphones today and in typical hardware stores. 
Furthermore, we make no modifications to the phone’s 
camera itself, unlike prior work’s use of phone cameras for 
pulse oximetry, which requires the removal of the IR filter of 
the camera. Instead, we rely on the front facing camera, 
which tends to have weaker IR cut off than the back facing 
cameras, making it more suitable for our application.  

��������	
�����	����
We address a major limitation of using a smartphone camera 
for doing hemoglobin measurement; a lack in sensitivity to 
wavelengths above 1000nm. First, we use only IR absorption 

                                        
2 http://www.tech-led.com/product/smc/ 

below 1000nm. Water begins to have a response above 
940nm and has an initial relative maximum at 970nm. 
Second, we not only measure the water content in the plasma, 
but also the proteins that make up about 10% of the blood 
plasma by volume[14] as a proxy for capturing the plasma 
volume to compare against hemoglobin concentration.  

This is accomplished by leveraging the blue absorption of the 
plasma. By illuminating the finger with a white LED (which 
contains a strong blue component) and an IR light at 970nm, 
the system is capable of capturing the plasma response. We 
also included another IR LED (880nm) to help capture the 
different absorption between the various forms of 
hemoglobin.  Both the 970 and 880nm LED are in the range 
of IR autofocus LEDs equipped in the current generation of 
smartphones. Our IR LEDs are sourced from the Marubeni 
SMC2 series. 

Even though some new smartphones are beginning to be 
equipped with IR LEDs, most smartphones only have a white 
LED. To address this issue, we look towards a commonly 
available IR source, the incandescent light bulb. 
Incandescent light bulbs typically have strong IR light 
emission in the NIR range. Our system uses a candelabra 6W 
incandescent light bulb that can be found in hardware stores.  

The LEDs are placed in a ring around the phone camera, 
while the incandescent light bulb was placed about 3 inches
above the finger.  
 

�
��������
For the HemaApp prototype, we use a Nexus 5 with an 
unmodified front-facing camera. For typical optical 
hemoglobin measurement, each lighting condition is cycled 
through at a high rate repeatedly to measure the response at 
each wavelength pseudo-simultaneously. In this way, the 
lighting conditions are all measured for the same pulse. 
However, due to the limited sampling rate of the camera and 

Figure 3: System overview of HemaApp, which consists of the phone and lighting hardware, data, and algorithm. The HemaApp
application communicates with an LED attachment. After a user places their finger over the LED and camera, multiple light sources 
are cycled through. A video is recorded for each light source. The algorithm then extracts the R, G, and B time series waveform for
each video by averaging each RGB channel independently for each frame. The algorithm then extracts machine learning features 
including peak and trough measurements for each light source, and also interaction terms between light sources. Finally, a SVM 
based regression is applied to estimate the hemoglobin concentration for the user.  
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the inability to synchronize the lighting circuit with the 
camera’s frame refresh, it is not feasible to measure all 
wavelengths of light at the same time without considerable 
access to low level hardware control. We discuss the 
tradeoffs of multiplexing and series testing in the discussion 
and make suggestions on how multiplexing can be achieved 
based on our own experiments. For our prototype, each 
lighting condition shines continuously for 15 seconds and 
cycles to the next light with an assumption that hemoglobin 
concentration and average blood flow does not change 
significantly during the course of the test, which takes a few 
minutes.   

The mobile app is built on the Android platform with the 
Android Camera 2 API, which allows for full control over 
the white balancing and exposure. This is important because 
infrared is generally considered an unwanted spectral 
response that camera applications will detect and rebalance 
settings to avoid. Prior work has found that certain white 
balancing settings, such as the “incandescent mode” can be 
used to avoid the rebalancing [9]. The Camera 2 API allows 
for full control over the exposure, white balance, and sensor 
sensitivity. The hardware gains are manually set for each 
RGB channel using presets that are empirically found for 
each lighting condition such that the three channels reported 
a similar level of light. This is necessary because the red 
channel typically has a much stronger response due to the red 
blood under the white and incandescent lights. If left to a flat 
white balance, the auto exposure will be set to the red 
channel, leaving the G and B channels highly underexposed. 
Finally, exposure is set using the camera API’s auto-
exposure settings. Once the image is auto-exposed, the 
exposure is locked and a 15-second video is recorded for 
each of the lighting conditions sequentially.  
 

%���	
Each light source is cycled through one after another and a 
15 second RGB video is recorded for each light source. The 
exposure, frame rate, white balance gain, and ISO settings 
are recorded for calibration. At an average resting heart rate 
of about 75 beats per minute (BPM), around 15-20 pulses 
were captured for each light source.  

��������	
The algorithm section first explains hemachrome analysis, 
which is the blood color analysis we base our algorithmic 
implementation on. We then detail the two stages of the 
implementation. First, the video processing step extracts the 
pulsatile signal recorded in each video. The second stage is a 
feature generation step that involves combining the intensity 
values extracted from each wavelength’s video. These 
features are then used with an SVM to train regression 
models based on the ground truth blood test hemoglobin.  
 

����
��������������
Hemachrome analysis is the study of blood coloration to 
analyze the components in the blood. HemaApp aims to 
measure the concentration of hemoglobin as compared to the 
concentration of plasma in the blood.  

The Beer-Lambert law states that the absorption of light is 
proportional to the concentration and thickness of the 
medium, given by: 
 

��������	 
 ���� � 	 (1) 
 

where �� is the incident light intensity, �  is the absorption 
coefficient, ���is the concentration, and � is the thickness of 
the medium that the light travels through. When the finger is 
illuminated with a single wavelength of light, the measured 
intensity ��������	 represents the absorption due to tissues, 
hemoglobin, and plasma: 

���� 
 �����	���������� ������  ! �"#�� $%  ! �&'(�)(�� *+���� , (2) 
 

where - is the wavelength of the incident light. To obtain the 
ratio of �./� and �012342�, it is necessary to eliminate the 
attenuation of the intensity signal due to finger tissue. This is 
accomplished by measuring the temporal change of the 
measured intensity as the thickness of the arteries oscillate 
with respect to the heartbeat.  

 
Figure 4: Light absorbed by living tissue. Adapted Web09[26]. 
The absorption of light changes due to the change in volume of 
blood when the heart pulses. 

The change in arterial thickness 5�  affects only the path 
length for ./ and 012342. By measuring the ratio of the 
maximum and minimum intensity of the light received, the 
effect of the tissue is removed: 
 

�6��7��

���8�9:��


 �;	��"#�� $%  ! �&'(�)(�� *+���� , (3) 

 

Where the ratio of intensities can then be expressed as:  
 

�<�� 
 =>
�?�2@�-

�ABCDEF�-  

 �./�- ./ G� H �?12342�- 012342 G� (4) 

 

The measured ratio of maximum and minimum values of 
intensity thus provide a measure of absorption due to the 
different components of blood. In theory, a system can use 
empirically measured absorption coefficients for each 
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compound at a specific wavelength of light to predict the 
hemoglobin concentration using Equation 4. By measuring 
the response at multiple wavelengths of light, multiple 
�<�� can be calculated. Ratios of �<�� across wavelengths over 
determine the ambiguity of G� allowing an estimate of �./� 
to be made. However, factors such as the distribution of the 
emitter, sensitivity of the sensor, and complex reflection 
properties of tissue make this infeasible. In our case, the 
incandescent and white LED are very broadband emitters 
that produce measurements that are poorly modeled by 
Equation 4. Using machine learned regressions to estimate 
the �$%��  and  �*+������  for each lighting source, we 
overcome our reliance on predetermined absorption 
coefficients at specific wavelengths for blood.
 

���������������
For each lighting condition, we extract the intensity of the 
peak and troughs for each pulse. The center section, 
measuring half the width and half the height of the image, is 
cropped and an average intensity for each channel is 
calculated. This is done because the image from the center of 
the image is the most consistent and stable.  

The signal processing technique that extracts �<  

1)� High pass filter with a cut off at 0.5Hz. This is to remove 
the fluctuations due to breathing, which are around 0.2-
0.3 Hz.  

2)� Apply an FFT on the filtered waveform and extract the 
dominant peak. The dominant peak gives an estimate of 
the heart rate.  

3)� Using the heart rate as a threshold between successive 
peaks, false peaks due to the dicrotic notch and the 
diastolic peak are avoided. The threshold is set at ¾ of 
the heart rate to avoid missing actual peaks. 

4)� Map the index of peaks and troughs onto the unfiltered 
signal. We need the original magnitudes of the peaks and 

troughs to calculate �< 
 =>
I&�(J

I�KL�MN
 

5) Calculate �< for each peak

 
Figure 5: To calculate the absorption change due to blood, a 
peak detection algorithm is applied on the temporal signal. An 
FFT is used to estimate the heart rate. Using the estimated heart 
rate as the minimum spacing between two peaks, the peaks and 
troughs of the heart beat signal is extracted.   

���	��������	����
In order to estimate the absorption coefficients at the 
broadband wavelengths used by our system, the HemaApp 
system cannot rely on the basic derivation of multi-
wavelength hemachrome analysis. The following is a list of 
the features. The first three features are derived directly from 
the Beer-Lambert equations in hemachrome analysis. The 
fourth and fifth features aim to capture nonlinear interactions 
between wavelengths.  

OPQRS 
 OTU : The baseline intensity due to tissue. 

OPQRS V  OWXYZ[\ 
 O]U  : The amplitude of the pulsatile absorption.  

^_
OPQRS�`

OWXYZ[\�`


  Oa : The adjusted amplitude of absorption that 

eliminates the effect of tissue. 

Oa�]U�bc� bd, 
  O]U�`ef O]U�`S : A pairwise ratio of pulsatile 
absorptions between all wavelengths. 

Oa�]UTU�bc� bd, 

Oa�`eOa�`S

OTU�`e OTU�`S

  : Absorption difference across 

wavelengths, adjusted with baseline.  

�����������
A separate SVM regression (SVR) model is trained for each 
embodiment of our proposed system: (1) white + 970 nm 
LED, (2) white + 970 nm LED + incandescent light, (3) 
white + 970 nm + 880 nm LED + incandescent light. We will 
refer to each embodiment as EMB#. The regressions are 
made based on ground truth values obtained from a blood 
test. During development, we find that a linear regression do 
not produce as good of a result as an SVR, but provides good 
insight into feature significance. As such, the linear 
regression is used to help in the feature selection process, as 
it is easier to interpret the resultant model, but the SVR is 
used to produce a model for evaluation by employing the 
features chosen through the linear regression. Table 1 
displays the feature list for the three embodiments:
 

Table 1: Features used for training in each embodiment.

EMB1 EMB2 EMB3 

�g��hFi, �<�g���ji� hFk, �<�g���ji� llm, 

�g��hFk, �<�g���ji� nom, �<�g���jk� hFi, 

�g��nom, �<�g���jk� hFk, �<�g��hFi� hFk, 

�<�g��hFi� hFk, �<�g�p���ji� �jk, �<�g�p���ji� �jk, 

�<�g�p��hFi� nom, �<�g�p���ji� hFk, �<�g�p���ji� nom, 

 �<�g�p��hFk� nom, �<�g�p��hFi� llm, 

  �<�g�p��hFk� llm, 
 

The SVM model is tested using a leave-one-subject out 
validation. The training is done using the MATLAB 
implementation of SVM regression with a Gaussian kernel 
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with default parameters, to avoid overfitting due to 
parameter tuning.  

%���	�$(('��#$
	+	,�(#%��#$
	
To evaluate and inform the design of HemaApp, we conduct 
a clinical study with three groups of people: healthy students 
and staff of the university, in-patients at a children’s cancer 
and transfusion clinic, and in-patients at an adult cancer and 
bone marrow transplant clinic. Data collections at these sites 
provide a diverse dataset paired with ground-truth 
hemoglobin concentration from CBC tests. We note that 
typical initial feasibility studies for hemoglobin 
measurement systems involve 10 – 60 people and typically 
cover population ranges of 8 – 16g/dL hemoglobin 
concentration [13,19]. In order to recruit patients from 
beyond these ranges, a system must be validated enough for 
hospital use during surgical procedures, as people who are 
well below the 8 g/dL range are likely in need of a 
transfusion or are already in surgery.  These initial feasibility 
studies are then followed by a series of larger follow up 
clinical validations in more diverse populations and repeated 
measurements per person during surgeries such as urologic 
procedures where hemoglobin concentrations change 
dramatically [16,19,24].  We base our study design to reflect 
the feasibility studies of these previous works. Our study 
include 31 patients in a range of 8.3 g/dL to 15.8 g/dL. 
 

Table 2: Demographic information of subjects. 

Participant Demographics (N = 31) 

Age (years)  6 – 77 (µ=31, σ=17.5) 

Hemoglobin (g/dL) 8.3 – 15.8(µ=12.1, σ=2.2) 

Gender Ratio 15 male:16 female 

Reported Ethnicity (n, %)  

 East Asian: 7 

 South East Asian/Indian: 6 

 Latino: 3 

 White: 14 

 Mixed: 1 
 

 

Each patient’s data set include a series of videos measuring 
the absorption change under multiple wavelengths of light. 
We collect videos within 24 hours of the ground truth CBC 
blood draw to ensure that hemoglobin measures are as 
accurate as possible. Within a day, hemoglobin 
concentration is typically stable within 0.5 g/dL[3]. Patients 
who have hemoglobin transfusion or heavy bleeding 
between the study and the blood draw were excluded.  

The in-patient clinics are centered on cancer patients, in 
particular leukemia and bone marrow transplant patients, 
because these patients tend to be chronically anemic. As 
such, these patients often have CBCs done as part of their 
clinical care. By including both children and adult clinics, the 
study cover a wide range of age and hemoglobin variations, 
allowing us to validate on different groups of people. Our 
study population include about 1/3 pale skintone, 1/3 sepia – 
light brown skintone, and 1/3 dark brown skintone. Due to a 
low population of people with black skintones in the city we 
conduct our study, we are not able to include those with very 
dark pigmentation in our study. However, it should be noted 
that pigmentation on the underside of the hand tends to be 
much lighter in comparison to the backside of the hand, as 
such, it is likely that the effects of very dark pigmentation is 
covered well enough by our inclusion of dark brown 
skintones. In our follow up study, we will be expanding to 
other hospitals nationally and internationally to have a wider 
spread of pigmentation to validate these claims.  
 

%���	���������	*��������	
In order to evaluate the effects of camera hardware and 
lighting conditions, we built a setup that allows us to 
efficiently cycle through all the combinations for every 
subject in our clinical validation. The setup is an acrylic box 
that contains a Bluetooth-enabled microcontroller that 
controls each of the light sources. The top of the box has a 
6W incandescent light and a white piece of card stock with a 
hole cut in the middle. A Nexus 5 smartphone is placed in 
the box with the camera pointing up to the ceiling of the box. 
The LED circuit is then placed over the camera. The box is 
clear except for the portion holding the electronics, which 
lets ambient light shine through. The box also has a black 
cover that is used to block out ambient light.  
 

 
Figure 6: The experimental set up included an acrylic box 
housing a 6W incandescent light bulb of 3000k color 
temperature and a Nexus 5 smartphone with an LED array 
attached to its front facing camera. The array is equipped with 
white, 880nm, and 970nm LEDs. The participant places their 
finger over the camera while covering the LEDs. 

The subject places the fingertip of the ring finger on their 
non-dominant hand on the camera. The subject is asked to sit 
still and not speak during the test to reduce movement. Each 
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lighting condition is then cycled through in the following 
order: incandescent, white, 970 nm, 880 nm.  

The study consists of taking a series of videos of the 
participant’s finger under various lighting conditions. Tests 
are done during the day, with no particular control over the 
ambient lighting conditions. An optical hemoglobin 
measurement is obtained using the FDA cleared Masimo 
Pronto 7 right before the recordings with the HemaApp 
system. The CBC blood test is used as ground-truth data and 
the optical Hb is used as a source of comparison to a 
specialized noninvasive device.  
 

�'�&(��	

*�������	���������	(�����	
The top half of Figure 7 shows the predictions for each 
HemaApp embodiment comparing to the ground truth CBC, 
calculated using a leave-one-subject out cross validation. 
The bottom half of Figure 7 shows the corresponding 
modified Bland-Altman plot, where the residuals    
(HemaApp – CBC) are plotted against the CBC hemoglobin. 
For comparison, the results of the Masimo Pronto are 
included in each plot.  

Results: HemaApp’s hemoglobin estimations correlate with 
the CBC’s predictions with a rank order correlation of 0.69, 
0.74, and 0.82 with a mean error of 1.56 g/dL, 1.44 g/dL, and 
1.26 g/dL respectively for each embodiment. The results of 
the Pronto are also compared to the CBC, which yields a rank 
order correlation of 0.81 with a mean error of 1.28 g/dL. 

Implications: The improvement from EMB1 to EMB2 
shows that simply supplementing the smartphone with an 
incandescent light both improves the correlation and 
decreases the error significantly. With the addition of an 
extra IR source, thus including both a 970 nm and 880 nm IR 
LED, the performance of HemaApp is comparable to the 
results of the Masimo Pronto. 

A Wilcoxon signed rank test and an F-test of the residual 
variances fails to show statistically significant differences 
between the EMB3 predictions, Pronto’s Hb predictions, and 
ground truth CBC values (p>0.05). An N-way ANOVA on 
the residual magnitude (|HemaApp EMB3 – CBC|) also did 
not reveal statistically significant effects on the residual 
magnitude due to age and race (p>0.05).  
  

��������	���	�����	 	
To evaluate how well HemaApp can be used as a tool for 
screening for anemia, the results of the regression are 
classified into two groups: anemic and normal. The 
classification is based on the average expected hemoglobin 
for each age group and gender. 

Figure 8 shows the classification results plotted against age. 
A different reference line is shown for male and female 
above the age of 16 as female tends to have lower 
hemoglobin than males. Those classified correctly are shown 
in gray. Higher sensitivity signifies better ability to detect the 
presence of anemia. Higher specificity signifies better ability 
to detect normal levels of hemoglobin. Table 3 breaks down 

Figure 7: (Top) A comparison between predicted hemoglobin levels and ground truth hemoglobin level. (Bottom) A Bland-Altman
plot showing residuals of predicted hemoglobin level against the ground truth hemoglobin. The ±1.96SD is shown for each plot. 
Embodiments 1, 2, and 3 shown from left to right. Blue represents the HemaApp results and orange represents the Pronto results. 
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the results by sensitivity and specificity for each embodiment 
and the Pronto. The 31 participants included 14 with anemia. 
The Pronto did not produce a hemoglobin measurement for 
one of the anemic participant due to low signal quality, thus 
the sensitivity results are for 13.  

Results: HemaApp’s classification results for each 
embodiment have higher sensitivity (78.6%, 85.7%, and 
85.7%) as compared to the Masimo Pronto (69.3%). In 
comparison, the Pronto performed better in specificity, 
88.2% compared to HemaApp (70.6%, 70.6%, and 76.5%).  
 

 
Figure 8: Anemia classification of HemaApp using typical 
hemoglobin reference ranges for each age and gender groups. 
Colored lines map incorrectly classified points to ground truth 
classification and hemoglobin predictions.  
 

Table 3: Anemia classification results for each embodiment. 

 Sensitivity Specificity 

EMB 1 78.6% (11/14) 70.6% (12/17) 

EMB 2 85.7% (12/14) 70.6% (12/17) 

EMB 3 85.7% (12/14) 76.5% (13/17) 

Pronto 69.3% (9/13) 88.2% (15/17) 
 

 

Implications: The results are in favor of HemaApp as a 
useful screener for anemia. This can be seen in the sensitivity 
of each embodiment being near or above 80%. The Pronto 
on the other hand performed better in terms of specificity, at 
just under 90%. Comparing HemaApp to Pronto, the two 
systems are calibrated differently. HemaApp is tuned to be 
more cautious in order to reduce missing patients who are 
anemic, but at the cost of lower specificity. We believe this 
is a safer choice for use cases such as community health 
workers screening in the field, as missing an anemic 
diagnosis is a higher risk. In comparison, the Pronto’s higher 
specificity is useful for situations such as in home 
monitoring. In situations where the patient is measuring 
frequently, having too many false alarms will result in 

unnecessary patient burden and hospitals getting frequent 
calls from unnecessarily worried patients.   
 

%#��&��#$
	
Our analysis of HemaApp shows that with some 
augmentation to the current smartphone hardware, our 
smartphone-based hemoglobin system compares favorably 
with the Pronto predictions. HemaApp cannot replace the 
CBC blood test, but can be used as an effective screener to 
determine whether further blood testing is necessary. The 
availability of the smartphone makes HemaApp a good 
candidate for at-home monitoring of chronically anemic 
patients, and its low cost can help equip community health 
workers in low resource areas screen for iron deficient 
anemia. The findings show that by using another ubiquitous 
item, the incandescent light bulb, the accuracy of HemaApp 
can be significantly improved. Although such light bulbs are 
beginning to be phased out in developed countries for more 
efficient alternatives, they are still easily obtainable as 
decorative lights in typical hardware stores.  
 

(�������	���	-�����	)��.	
The current results are based on data collected on a Nexus 5 
device and using only one brand of incandescent light bulb. 
As such, for the system to be more accessible, it needs to 
function on various types of devices and supplemental 
lighting. Different brands and models of phone use different 
cameras, lenses, and filters. The strength of the IR filter will 
strongly influence how strong the IR LEDs need to be for 
penetration. The necessary adjustments based on these 
factors need to be investigated before the results of 
HemaApp can be generalized to different hardwares.  

The incandescent light’s properties also present another 
variable for future exploration. The current light bulb is a 
3000K bulb, which places its peak wavelength at about   
1000 nm, making it ideal for the detection of water. Another 
variable is the effect of the age of the light bulb. As light 
bulbs become less efficient, their emitted spectrum changes. 
It is possible that in order for the incandescent light bulb 
method to remain accurate over time, a calibration stage 
would be necessary after some time. Another issue with 
using an incandescent light bulb is ambient lighting. When 
using the data collected when ambient light is allowed into 
the experimental setup, the results of the best case EMB3 
dropped to R = 0.60 and a mean error of ±1.72 g/dL. 
Although this does not limit the use of EMB2 and 3 in a dark 
room, it does suggest a user would have to make sure to use 
a lamp shade to reduce large fluctuations due to changes in 
ambient lighting. Further experiments will have to be done 
to determine to what degree ambient light exposure affects 
the results. We believe using a brighter light bulb and placing 
the hand closer to the lamp will reduce this problem 
significantly, limiting the effect of ambient light.  

����	��������������������
The current data collection focuses on a range of 8-16 g/dL, 
which is sufficient for covering certain levels of anemia and 
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normal populations; however, this means HemaApp cannot 
be used for those who are so gravely anemic that they need 
immediate transfusion or those with elevated hemoglobin. 
Our current data collection has come across a few patients in 
these extreme ranges, but we will need a more targeted 
recruitment to have enough data to develop the system to 
work in these ranges. To find people with elevated 
hemoglobin, we will need to expand our clinical study to 
include pulmonary clinics with patients that have high 
hemoglobin due to advanced pulmonary ailments. For 
obtaining extremely low hemoglobin, our collaborators have 
suggested taking data at midnight, when most of their 
transfusion patients are admitted and their hemoglobin 
measures as low as 4-5 g/dL. For this to work, our system 
needs to become much quicker, more robust, and self-
contained such that running our study does not require the 
participation of the patient and fast enough that we do not 
interfere with the patient’s clinical care.  

�  �	��� ��������������	
���
Only patients with normal red blood cell traits were recruited 
in our initial study, but we plan to expand our evaluation to 
include different blood disorders (e.g., sickle cell, 
thalassemia, and hemolyzing patients). Each of these 
disorders can potentially cause different optical absorption 
variations that may or may not be observable by our current 
measurement technique. Further studies of the optical 
properties of different hemoglobin types will have to be done 
through laboratory experiments. On the other hand, patients 
with hemolysis have ruptured red blood cells that results in 
free floating hemoglobin in the blood plasma. In the 
measurement of hemoglobin concentration, it is important to 
distinguish between hemolyzed and non-hemolyzed 
hemoglobin. In a laboratory test, the blood is first separated 
into the plasma and intact red blood cell components before 
hemoglobin concentration is determined. HemaApp has not 
been validated to differentiate the two conditions to produce 
an adjusted measurement. This is not possible for our system.  

���������!�	��"����	��
A major hurdle to making the system truly deployable is in 
making a system that can ensure data quality. All the data 
collection is conducted either by the development team or 
trained data collection assistants who have experience using 
prototype medical devices. The interface produces a real-
time visualization of the camera feed that they interpret at the 
time of data collection to ensure that the patient has fully 
covered the camera and LEDs and the waveform being 
recorded is void of excessive movement. 

To enforce proper finger placement and reduce movement, a 
finger cuff can be designed to center the finger over the 
camera. A snug fit for such a cuff would be ideal, but it 
cannot be so tight that the finger loses circulation. 
Furthermore, the finger cuff will also function as a cover to 
block the ambient light. A small window can then be 
integrated into the top of the cuff to be opened for the 
incandescent light.  

An automated signal quality detector will also be necessary 
for detecting whether a signal is stable enough for analysis. 
The usual components in the signal consists of the pulse 
signal and the breathing signal, both of which are typically 
periodic between 0.3 – 2 Hz. An automated system can 
analyze for sudden DC shifts caused by the finger shifting, 
resulting in a non-periodic signal alteration. This signal 
quality detector then determines whether a segment of 
collected data is useable for analysis, prompting the user to 
perform the data collection again if it failed.  
 

�$
�(&�#$
	
HemaApp is a smartphone application that noninvasively 
monitors the hemoglobin concentration using the 
smartphone’s camera and different lighting sources. 
Monitoring hemoglobin is a standard clinical tool for both 
screening and assessing a patient’s response to treatment. We 
evaluate HemaApp on 31 patients ranging from 6 – 77 years 
of age using three different embodiments of our system. The 
first uses LEDs commonly found on smartphones. The 
second augments the phone with an incandescent light 
source. Finally, the third both augments the phone with an 
incandescent source and uses a custom LED setup. The 
resulting hemoglobin predictions yield a rank order of 0.69, 
0.74, and 0.82 correlation with the gold standard blood test. 
In screening for anemia, HemaApp can achieve 85.7% 
sensitivity and 76.5% specificity when augmented with 
incandescent lights and IR LEDs. Comparing to an 
specialized FDA-approved noninvasive hemoglobin 
measurement device, which performed at a rank of 0.81 and 
an sensitivity and specificity of 69.3% and 88.2%, our results 
for HemaApp are promising.  

To further validate our results, a larger national and 
international study that includes a more global demographic 
will need to be deployed. The current results can only be 
interpreted under the scope of normal hemoglobin 
phenotypes. However, many of the clinical use cases that 
would highly benefit from daily monitoring of hemoglobin 
and anemia require the same efficacy for hemoglobins that 
are deformed due to changes in its protein structure.  

This study is a first step in transferring hemachrome analysis 
techniques to a smartphone platform, introducing 
hemoglobin monitoring to a wide audience, from those who 
need at home monitoring to community health workers.  

���
$)('%/'"'
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