
WIRELESS SENSING
CSE 599 N1: Modern Mobile Systems

modernmobile.cs.washington.edu

Content borrowed from Rajalakshmi Nandakumar

FINGERIO

FingerIO
Achieves finger tracking for near device interaction without instrumentation the
finger and in occluded (non-line of sight) scenarios

1) Making anything an input surface
2) Move beyond tiny screens

Existing approaches: Doppler Radar (Soli)
Complex processing

RF travels at the speed of light ⇒ needs GHz of bandwidth (for sampling)

Mobile devices have limited processing

Custom hardware

Requires yet another radio on mobile devices

Consumes additional power and area on devices

Key Idea: Transform the device into Active Sonar

Sound waves transmitted by the phone
speaker reflect off of the finger

Key Idea: Transform the device into Active Sonar

Echo from finger is recorded
by 2 microphones

Mic 2

Mic 1

Key Idea: Transform the device into Active Sonar

Time for the echo to arrive back at the
phone changes as the finger moves

Accuracy Depends on Time Measurement

If our sampling rate is 48 kHz and
the speed of sound of 343 m/s

How much does one sample
correspond to?

Accuracy Depends on Time Measurement

If our sampling rate is 48 kHz and
the speed of sound of 343 m/s

How much does one sample
correspond to?

48000 times per second
343 / 48000 = 0.007m = 0.7 cm
Sub-centimeter!

How can we measure arrival time?
Transmit chirp signals and use

autocorrelation to determine arrival times

Chirp

First order solution: correlation
We use the closest moving echo to achieve

finger tracking

Chirp

Correlation in practice
Estimate echo arrival with 2 - 3 sample error!

How much of an error is that in centimeters?

Correlation in practice
Estimate echo arrival with 2 - 3 sample error!

How much of an error is that in centimeters?

2 * 0.7 cm = 1.4 cm

3 * 0.7 cm = 2.1 cm

How to get the exact arrival time of the echoes?

Inspiration from WiFi networks

Transmitters and receivers do not share a common, synchronized clock

Receivers need to determine the start of a message to successfully decode

OFDM Wi-Fi has 20 MHz of
bandwidth to transmit
information.

Guards against
non-uniform
‘frequency
response’

Remember how
across every
channel,
frequency
response is
different.

Each ‘truck’ is a subcarrier

Frequency response for different SISO links

Possible reasons?

Frequency response for different SISO links

Possible reasons?

Interference (Wi-Fi ISM
band is super-crowded)
Microwaves etc.

Multi-path (reflections)

Fading

Capacity of channel
The wider your bandwidth, the more data you can send

The capacity of a channel is related to bandwidth and SNR

OFDM has almost same bandwidth as wide-band channel

Difference between FDM and OFDM

1) At transmitter, run IFFT to get OFDM
symbol
Prepend + append the green samples to
get a cyclic suffix/periodic signal

2) The yellow box is where you take the FFT
over at receiver
If the receiver window is aligned perfectly
over the signal, the phase is 0 across all
subcarriers

3) If the receiver window is off by E samples,
we notice phase offsets

Now we can correct the receiver window to
sample precisely!

Now we get sub-centimeter resolution

Putting it all together

1. Transmit 18-20 kHz OFDM symbols every 5.92 ms
2. Use correlation to get a coarse timing estimate within 2-3 samples
3. Correct error using phase properties of OFDM to achieve < 1 cm accuracy

Determining user motion
Do a ‘diff’ on the echo profiles to see if there’s motion

How to get 2D location?

Mic 1Speaker

The speaker and mic are the focii of an ellipse

How to get 2D location?

Mic 1Speaker

Mic 2
The speaker and mic are the focii of an ellipse

With two mics, you get 2 intersection points

User can interact on either side of the phone

Results

Tracking error/how to read a CDF

WISEE

http://www.youtube.com/watch?v=a3RfULw7aAY

https://docs.google.com/file/d/1zdzKN1UdlJcUrqwplRm1u_wB5Ds698F5/preview

Doppler effect
f_r = frequency at receiver

f_t = frequency at transmitter

c = velocity of waves, speed of light = 3e8

v = velocity of hand, tests show fastest speed is 3.9m/s

Away from laptop = lower frequency shift

Toward laptop = higher frequency shift

Frequency shift

Doppler shift
maximized when
object moves
towards the receiver

FFT bin width?
Sampling rate is 44.1kHz

2048 point FFT

Pilot tone of 20 kHz

FFT bin width?
Sampling rate is 44.1kHz

2048 point FFT

Pilot tone of 20 kHz

Spectral width = 22.05 kHz

1024 FFT bins because we only take the left side of the FFT

22050/1024 = 21.5 Hz per bin

How many bins to search through?

Speed = 6m/s

fr=ft*((c+v)/(c-v))

Fr = 20.712 kHz

Frequency shift is 712 Hz

712 Hz / 21.5 Hz = 33 bins

Slowest speed we can detect?

Min bin size is 21.5 Hz

f_r = f_t + 21.5 Hz

v=(c*(f_r-f_t))/(f_t+f_r)

v= 0.18 m/s = 18 cm/s

Wi-Fi doppler shifts
Wi-Fi f_t = 5 GHz

v = 6 m/s

Frequency shift is 200 Hz

The ‘typical’ wireless channel has 20 MHz (or more) of bandwidth

Why 5 GHz and not 2.4 GHz?

At higher f_t, the Doppler shift will be greater

Getting fine grained resolution
Take FFT over M OFDaM symbols (with a single symbol the N-point FFT has a low
N because of the low duration, with multiple symbols, you can take an MN point
FFT). Each frequency bin has higher resolution

FFT over 2 OFDM symbols

Both symbols carry the same
information, so your bandwidth
effectively halves.

Odd sub-channels are zero

Bandwidth reduces by a factor of M

You now have a narrow-band signal

Arbitrary OFDM symbols
Perform FFT over symbol, when you know the bits that were transmitted you can
‘equalize’ it to the first OFDM symbol

 i = symbol, n = subcarrier

 Multiply this term over every incoming channel on every symbol

Frequency offsets
Frequency offsets - oscillator (made of crystals) are not perfect

Transmitter and receiver don’t share the same oscillator

Frequency offset is the combination of the oscillator imperfections on both

We can track the DC energy (center
peak frequency) as it moves due to
frequency offset.

After tracking we can observe the
doppler shift with respect to it

Non-continuous transmissions
Channel is not always occupied in reality, OFDM symbols interspersed with silence

We can linearly interpolate the brief periods of time between symbols

This is ok because a gesture is a continuous motion

Of course as the symbols become
more spread out (to the point that it
exceeds the time to make a gesture),
it becomes harder to track the doppler
shifts.

Maps positive and negative
shifts to a series of
numbers e.g. 1, -1, 2, using
thresholding

Other techniques:

Put spectrogram through
ML

Dynamic time warping
(provides an edit distance
between signals)

