FABRICATION

CSE 599 N1: Modern Mobile Systems

modernmobile.cs.washington.edu

Content borrowed from Vikram lyer

3D Printing Wireless Connected Objects

Can we **3D print** Wi-Fi connected objects?

3D Printed Interaction Devices

How can plastic objects communicate?

Challenge: Printing Connectivity

[CHI 2015]

Need communication using only plastic

Fundamental Challenge: Wi-Fi operates at 2.4 GHz

Can't print 2.4 GHz oscillator with plastic

Our Solution: Reflect Wi-Fi Signals Instead

Key Idea: Use mechanical motion to send data

First 3D printed objects that can connect with Wi-Fi

First 3D printed Wi-Fi input Gadgets and Sensors

How does printed Wi-Fi work?

Printed Wi-Fi has Three Key Components

Switch produces changing reflections

3D Printed Antenna Design

- 1. Start with **reference** metal antenna designs
- 2. Optimize length, width, thickness for printed materials
- 3. Integrate antennas into **3D printed** objects

Dipole Antenna

3D Printed Switch

Encoding Information on the Gear Teeth

3D Printed Slider: An Inside Look

Separating human motion from printed objects

3D Printed Wireless Sensors

3D Printed Wireless Sensors

3D Printed Wireless Sensors

Flow Rate Sensing

Performance Evaluation

45 bps data rates 17 m Line of Sight Range 45 m² Non-line of sight Area

Can decode multiple printed objects concurrently

Can we embed static information in objects?

Embedding Information in 3D Prints

Read data on smartphones

Our Solution: Use Magnetic Materials

Read data using phone magnetometer

How do we encode data?

Original objects

Painted objects

Decoding Data on a Smartphone

Embedding Information in 2D

First 3D printed objects that can connect with Wi-Fi

First smartphone readable magnetic 3D printed objects

Wireless Analytics for 3D Printed Objects

What do we mean by analytics?

Track the use of printed objects over time

Embed wireless sensing in printed objects

What else could we do with wireless analytics?

Why not use electronics?

- Requires designers to understand **electronics**
- Requires **power** source

Enable communication using **plastic** objects

Printed Analytics

Wireless, circuitless physical analytics capture for 3D printed objects

Printed prosthetics

Smart pill bottle

Wireless insulin pen

Our Contributions

- •Backscatter communication **across a room** using conductive plastic
- •3D printed designs to sense **bi-directional linear** and **rotational** motion
- •Data storage for printed objects for sensing beyond wireless range

3D Printing wireless devices

Decoding wireless signals

Tracking rotational motion

Analytics outside wireless range

How can plastic objects **communicate**?

Printed objects communicate using reflections

Switch produces changing reflections

How do we build a switch?

1. Conductive contact

2. Bi-directional spring

Conductive filament

Cantilever spring

How do our switches work?

Switch in action: e-NABLE arm

3D Printing wireless devices

Decoding wireless signals

Tracking rotational motion

Analytics outside wireless range

How do we decode the data?

What happens at long range?

Self-interference limits range

Solution: Cancel out the interference

How well does cancellation work?

Works up to transmitter-receiver distances of 4 m

3D Printing wireless devices

Decoding wireless signals

Tracking rotational motion

Analytics outside wireless range

How do we measure angle?

How do we measure direction?

3D Printing wireless devices

Decoding wireless signals

Tracking rotational motion

Analytics outside wireless range

How do we read outside the wireless range?

• Store analytics outside range

• Wirelessly **upload** the data when back in range

Insulin pen requirements

- Store count of presses
- Accumulate each press
- Upload the data when back in range

Solution: Store information mechanically

How do we keep the spring coiled?

Key idea: Use a ratchet to coil the spring

Ratchet accumulates rotation in spring

Storing and reading data from an insulin pen

FRONT OF BIDIRECTIONAL ROTATIONAL SENSOR

Reading back the data

Future work

• Designing better form factor mechanism

• Recording timestamps of usage

• Increasing range to work across a whole home

Design and Fabrication by Example

Design and Fabrication by Example

Data driven approach for designing 3D models that are actually fabricable

Reality: When fabricating something beyond what can be produced by a 3D printed, one has to consider many complex requirements in particular the connectors like screws and connectors

System creates a database of parameterized templates that were converted from expert designs.

Automatically extracts constraints/parameters

Guides users through the process of manipulation, positioning and stability analysis

Different components from expert database Final user-designed prototype

Structural parts + Mechanical joints Output: bill of materials

Hierarchical template representation

System creates a taxonomy that takes these complexities into account with categories for mechanical joints (prismatic, ball, hinge), structural parts (screws, hinges, brackets), principal parts (shelves, legs, wheels)

conn :

Geosemantic relationships are labelled by experts.

Leaves of tree are 'least fabricable units'

Snapping method

q^i: degrees of freedom

Fⁱ: deformation function that computes new geometry

Aⁱ: feasible space of qⁱ that is fabricable and collision free

Consider various geometric relationships:

Concentricity, coplanarity, symmetry, order

Snapping method

Constraint propagations are propagated through the hierarchy. Constraints remain intact when one principal component higher up in the hierarchy has changed.

Fabrication:

Snapping - When dragging a new model, system automatically adjusts position and size to align with working model

Connecting - Automatically retrieves new connecting elements and computes new geosemantic relationships

How can this be applied to Printed Wi-Fi?

Soft Stanford Bunny

Biswep Research, Pittsburgh