
OmniTouch: Wearable Multitouch Interaction Everywhere
Chris Harrison1,2 Hrvoje Benko1 Andrew D. Wilson1

1Microsoft Research
One Microsoft Way

Redmond, WA 98052
{benko,awilson}@microsoft.com

2Human-Computer Interaction Institute
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh PA 15213
chris.harrison@cs.cmu.edu

Figure 1. OmniTouch is a wearable depth-sensing and projection system that allows everyday surfaces - including

a wearer’s own body - to be appropriated for graphical multitouch interaction.

ABSTRACT
OmniTouch is a wearable depth-sensing and projection sys-
tem that enables interactive multitouch applications on eve-
ryday surfaces. Beyond the shoulder-worn system, there is
no instrumentation of the user or environment. Foremost,
the system allows the wearer to use their hands, arms and
legs as graphical, interactive surfaces. Users can also transi-
ently appropriate surfaces from the environment to expand
the interactive area (e.g., books, walls, tables). On such sur-
faces - without any calibration - OmniTouch provides capa-
bilities similar to that of a mouse or touchscreen: X and Y
location in 2D interfaces and whether fingers are “clicked”
or hovering, enabling a wide variety of interactions. Relia-
ble operation on the hands, for example, requires buttons to
be 2.3cm in diameter. Thus, it is now conceivable that any-
thing one can do on today’s mobile devices, they could do
in the palm of their hand.

ACM Classification: H.5.2 [Information interfaces and
presentation]: User Interfaces - Graphical user interfaces;
Input devices and strategies.

General terms: Human Factors

Keywords: On-demand interfaces, finger tracking, on-body
computing, appropriated surfaces, object classification.

INTRODUCTION
Today’s mobile computers provide omnipresent access to
information, creation and communication facilities. It is
undeniable that they have forever changed the way we
work, play and interact. However, mobile interaction is far
from solved. Diminutive screens and buttons mar the user
experience, and otherwise prevent us from realizing their
full potential.
In this paper we explore and prototype a powerful alterna-
tive approach to mobile interaction that uses a body-worn
projection/sensing system to capitalize on the tremendous
surface area the real world provides. For example, the sur-
face area of one hand alone exceeds that of typical smart
phone. Tables are often an order of magnitude larger than a
tablet computer. If we could appropriate these ad hoc sur-
faces in an on-demand way, we could retain all of the bene-
fits of mobility while simultaneously expanding the interac-
tive capability. However, turning everyday surfaces into
interactive platforms requires sophisticated hardware and
sensing. Further, to be truly mobile, systems must either fit
in the pocket or be wearable.
In this paper, we present OmniTouch, a novel wearable sys-
tem that enables graphical, interactive, multitouch input on
arbitrary, everyday surfaces. Our shoulder-worn implemen-
tation allows users to manipulate interfaces projected onto
the environment (e.g., walls, tables), held objects (e.g.,
notepads, books), and their own bodies (e.g., hands, lap). A
key contribution is our depth-driven template matching and
clustering approach to multitouch finger tracking. This ena-
bles on-the-go interactive capabilities, with no calibration,
training or instrumentation of the environment or the user,
creating an always-available interface [8,24,28].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’11, October 16–19, 2011, Santa Barbara, CA, USA.
Copyright © 2011 ACM 978-1-4503-0716-1/11/10... $10.00. 	

RELATED WORK
OmniTouch draws from a variety of fields, including touch
interaction techniques, surface computing, free-space ges-
turing, computer vision, wearables, and ubiquitous compu-
ting. Here we focus on highly related, influential work that
intersects these fields.
Augmenting the environment with interactive projection
interfaces has been a research vision for decades. A variety
of approaches are possible, including installing projectors in
the environment [20,32], using handheld projectors [3,22],
and having users wear mounted projectors [11,17]. Provid-
ing touch-based interactivity on arbitrary projected objects
is challenging, and generally requires a fixed non-tracking
projection [8,17], careful calibration of objects in the envi-
ronment [20,32,34], or objects to be instrumented with sens-
ing elements [10,14,22]. A small number of such systems
have attempted to be truly ad hoc, without requiring perma-
nent instrumentation of the surfaces they operate on
[12,17,29,33,34].
The emergence of pico-projectors has enabled a new class
of worn, on-body projected interactive systems. SixthSense
[18] and Interactive Dirt [17] both featured a worn cam-
era/projector combination. Finger tracking was achieved by
wearing fingertip markers (e.g., color or IR reflective). In
contrast to our system, true touch interactions were not pos-
sible since the two systems could not differentiate between
clicked and hovering fingers. This was partially due to the
systems’ inability to track surfaces in the environment,
which also made it impossible to have the projected inter-
face change and follow the surface as it moved. Also of note
is Skinput [8], which uses bio-acoustics to detect finger tap
events on the skin. Skinput’s main limitations were its lack
of support for any surface other than the user’s body, its
inability to detect touch drag movements, and the lack of
support for multitouch. Although the system included a pi-
co-projector, no surface tracking was performed, requiring
users to position their arms at a predefined position.
Detecting fingers, hands, touches, and gestures has been an
active research topic in computer vision [1,6,20,26]. Mak-
ing computer vision-based tracking work in a wearable, ad-
hoc context is challenging due to lack of control of the envi-
ronment and the general inability to instrument users (e.g.,
markers [17,18], gloves [27]).

Closely related to our technical approach are systems using
the depth-camera tracking without augmenting the user or
environment. LightSpace [32] uses an array of depth camer-
as to track users and arm-level manipulations in an aug-
mented room. At a smaller scale, a single camera can pro-
vide conventional touch events by using a per-pixel depth
threshold determined from a histogram of the static scene
[34]. Both approaches work on a variety of surfaces, but
require careful calibration before they can operate.
HARDWARE
Our proof-of-concept OmniTouch system, seen in Figures 1
and 2, consists of three principal components. First is a cus-
tom, short-range PrimeSense [21] depth camera, which pro-
vides a 320x240 depth map at 30 FPS. Objects as close as
20cm can be imaged by this sensor, with relative error in the
depth (Z) axis of approximately 5mm. Depth accuracy de-
creases and noise increases at larger distances. However, for
our application, which chiefly considers interaction within a
1m “bubble” in front of the user, noise and accuracy loss
was minimal. We initially constructed a prototype using a
Microsoft Kinect with good results. However, a minimum
sensing distance of ~50cm necessitated awkward placement
high above the head to capture the hands.
The second key component is a Microvision ShowWX+
laser pico-projector [16]. This projector has the important
property of wide angle, focus-free projection of graphical
elements regardless of depth (i.e., distance from projector).
Finally, the depth camera and projector are tethered to a
desktop computer for prototyping purposes.
Both the depth camera and projector are rigidly mounted to
a form-fitting metal frame, which is worn on the shoulders,
and secured with a chest strap. We chose the shoulder as it
provides a good vantage point (both for sensing and projec-
tion) of the arms and held objects, as well as proximate
fixed surfaces, such as walls and tables. However, our ap-
proach is amenable to other locations (e.g., the upper arm
[8] and chest [18]). Additionally, the shoulders tend to be
very stable, allowing for projected interfaces with minimal
sway and jitter (see Video Figure).
The first person body-stabilized perspective is desirable for
sensing and processing, as many simplifying assumptions
can be made about the location and orientation of fingers
and hands. For example, it is physically impossible for the
user’s arms to enter the image from the top. The system’s
field of view also automatically translates with the wearer.
Further, camera and projection occlusion issues are mini-
mized, as their fields of view roughly coincide with the
wearer’s line of sight.
MULTITOUCH FINGER TRACKING
We present a unique approach to ad hoc finger tracking,
which enables multitouch input on arbitrary surfaces, both
flat and irregular, with no calibration or training. We can
resolve the X, Y and Z position of fingers, and whether they
are touching or hovering over a surface. Thus, OmniTouch
produces input events similar to that of mice or
touchscreens, enabling a wide variety of applications.

Figure 2. Our prototype shoulder-worn OmniTouch System.

Finger Segmentation
Identifying finger input is a multistep process. First, we take
a depth map of a scene (Figure 3A) and compute the depth
derivative in the X- and Y-axes using a sliding, 5x5 pixel
window (Figure 3B; X and Y derivative visualized using
blue and red channels respectively). We then iterate over
this derivative image, looking for vertical slices of cylinder-
like objects. This is similar to template matching, but with
some dynamic parameters. Put simply, for a slice of pixels
to be a candidate, it must show a steep positive derivate,
followed by a region of relative smoothness, and finally
closed by a steep negative derivative (Figure 4). This order-
ing is critical; otherwise, concave features (e.g., gaps be-
tween fingers) would also be recognized. Also significant is
that the depth camera we use represents sensing errors, out-
of-range surfaces, and occlusion boundaries as holes in the
depth image. As such, they appear as concavities in the de-
rivative, which our process ignores.
To primarily isolate fingers, candidate slices must be be-
tween 5 and 25mm in height, a range we found to cover
typical finger diameters, including the critical fingertip.
Pixel distances can be converted into real world distances
(mm) because the depth value is also known. The result of
this finger-slice identification process is shown in Figure
3C.
Using the derivative of the depth map has several benefits
that make it a key component of our sensing approach.
Foremost, this approach suppresses absolute depth infor-
mation, allowing the scene to be treated as a conventional
2D image, which is easier to process with standard comput-
er vision techniques. Additionally, regardless of the surface
the finger is operating on, the derivative profile is mostly

invariant, greatly simplifying recognition.
Once all candidate finger slices are identified, we then
greedily group proximate slices into contiguous paths. Paths
that are shorter or longer than probable fingers are discard-
ed. Even in noisy scenes, this process yields few false posi-
tives. The output, seen in Figure 3D, resembles a skeletal
model of the fingers. Like other computer vision techniques,
fingers that are occluded are not detected. Additionally, and
usefully, fingers that are “tucked in” are not tracked. How-
ever, our technique is sensitive to approach angle (can nei-
ther be too steep nor too shallow) and generally requires
fingers be outstretched for reliable recognition.
Many approaches are possible for disambiguating which
end of the path is the fingertip. In our proof-of-concept sys-
tem, we assume a right-handed user, and thus, in almost all
cases, the leftmost point in a path is the fingertip. This
worked well in practice for our left-shoulder mounted con-
figuration. To eliminate sensing noise and pixel-boundary
flicker, fingertip positions are smoothed by a Kalman filter.
Finger Click Detection
The finger segmentation process, described above, yields
the spatial location (X, Y and Z) of fingers. A secondary
process is used to determine whether these fingers - specifi-
cally the tips - are in contact with a surface (i.e., a “click”).
We start by computing the midpoint of the finger path,
which roughly equates to the location of the minor knuckle.
From this point, we flood fill towards the fingertip (i.e., all
directions but rightward). This operation is performed on
the depth map using a tolerance of 13mm in depth to deter-
mine if neighboring pixels can be filled. When the finger is
hovering above a surface or in free space, the flood fill ex-
pands to encompass the entire finger (Figure 5, left). How-

Figure 5. Flood filling result when finger is

hovering (left) and “clicked” (right).

Figure 4. Close up example of a candidate finger slice.

Figure 3. Left to right: depth map, derivative of depth map, finger slices overlaid in blue, path finding and tip estimation.

ever, when the finger contacts a surface, the fill operation
floods out into the connecting object (Figure 5, right). If a
pixel count threshold is passed (e.g., 2000 pixels), the flood
fill discontinues and the finger is determined to be clicked.
Note, if the surface is very small or lies outside the camera’s
view, the threshold may not be passed, and the click missed.
This process detects finger clicks robustly, and also main-
tains a clicked state when dragging a finger across a surface,
including irregular ones. In practice, a finger will be seen as
“clicked” when its hover distance drops to 1cm or less
above a surface; above 2cm is reliably seen as hovering.
Hover distances between 1 and 2cm are ambiguous, and
largely depend on local noise; we apply hysteresis to reduce
flickering between click states. Anecdotally, users did not
notice the ambiguity and generally “clicked through” this
region on the way to their desired target.
ON-DEMAND PROJECTED INTERFACES
With finger tracking alone, it is possible to support interfac-
es lacking graphical feedback, or “invisible interfaces” [7].
For example, it would be possible to sketch simple figures
or perform graffiti-like text entry on a notepad.
Infusing interactive graphical feedback expands the applica-
tion space considerably. However, the inherent dynamic
nature of objects in the real world makes this complex. Not
only must interfaces track which objects they are rendered
on, but they must be projected in such a way as to account
for their host surface’s position and orientation in 3D space
(Figure 6). Without these considerations, interfaces would
be rendered with inappropriate position, orientation and
size, and be subject to perspective visual distortions.
Surface Segmentation and Tracking
In addition to finger tracking, the depth video stream is also

used to track surfaces suitable for projection in front of the
user. First, distinct surfaces are segmented by performing a
3D connected components operation on the depth map (Fig-
ure 7, right). Surfaces smaller than hand size are discarded.
For each surface, we compute the orientation about the Z-
axis (orthogonal to the camera) by taking the covariance of
the component’s pixels in space, and computing the first
and second moments. Orientation about the X- and Y-axes
is estimated using the distribution of surface normals, which
tend to be Gaussian over the primary orientations.
We also generate a central X/Y/Z “lock point”, to which an
interface can be attached (Figure 7). This point must be sta-
ble regardless of translation and rotation in 3D space. One
approach is to take the centroid of an object’s pixels. How-
ever, because part of the surface may be occluded when the
user is interacting with their fingers, this is not reliable. In-
stead, we move inwards 10cm along the surface’s major
axis from its upper extent, centered on the midpoint of the
minor axis (Figure 8, red). Although more sophisticated
techniques are possible, this solution worked well. Finally, a
Kalman filter is used to smooth all six degrees of freedom.
Projector/Camera Calibration
To enable authoring and interaction with projected interfac-
es, it is necessary to calibrate the projector and camera in a
unified 3D space. Since our depth camera reports real-world
depth values (mm), we chose that as our target coordinate
system and calibrate the projector using camera values.
The process requires the intrinsic parameters of the projec-
tor, such as the field of view and the center of projection. To
find the extrinsic projector parameters we require four non-
coplanar calibration points. These four points must be iden-
tified by the depth camera and located in the projector im-
age. Once the correspondence of the 2D points in the pro-
jected image and their actual 3D location in space (depth
camera value) is established, we use the POSIT algorithm
[5,32] to find the position and orientation of the projector.
Note that this calibration only needs to be performed once,
since the spatial relationship between the projector and the
camera is fixed (i.e., both are mounted to a rigid frame).
Summoning & Defining Interactive Areas
Determining where to place an interface and how large it
should be is non-trivial. For example, consider the hand: Do
we center the interface in the middle of the palm, or the
centroid of the surface? Or the midpoint between the wrist
and finger tips? Or the absolute center of the bounds of the
hand? Figure 8 depicts these four (of many possible) op-
tions. Sizing the interface has similar challenges: do we fit
an interface to just the palm (which is attractive due to its
relative flatness), the hand minus the thumb, or the full ex-
tent of the hand?
Previous approaches to on-body interfaces [8,17] projected
a fixed-sized interface at a fixed image location. In order to
use such an interface, a user must raise a physical object
into this region at a specified distance, or walk up to a wall.
This places the interface localization burden entirely on the
user and is ill-suited for many on-the-go mobile scenarios.

Figure 6. In order for interfaces to appear visually aligned and
correct when projected onto moving surfaces, the projected
image must be dynamically pre-distorted (see inset images).

Figure 7. 3D connected components and their lock points.

In contrast, OmniTouch implements three distinct approach-
es to define, present, and track interactive areas:
One Size Fits All
OmniTouch can use a surface’s lock point and orientation to
provide an interface that tracks with a surface. However,
because the bounds of the object in 3D space are unknown,
the interface can only be as big as the smallest conceivable
surface (generally the hand). Thus, even when a projecting
on a large table, the interface will still be hand-sized. Addi-
tionally, every surface must use a generic lock point, which
can lead to sub-optimal centering on asymmetric and organ-
ic surfaces, like the hands. These drawbacks motivated us to
explore more sophisticated options.
Classification-Driven Placement
Classification-driven placement consists of two stages.
First, the system differentiates between a small set of sur-
faces by performing surface classification. Second, the sys-
tem automatically sizes, positions and tracks an interface
given the available projection area and heuristics describing
the appropriate location for that surface.
We perform surface classification among a set of five com-
mon surfaces (hand, arm, pad, wall, and table) by consider-
ing a variety of features derived from each surface’s depth
image. For example, to distinguish between planar and or-
ganic surfaces, we calculate the standard deviation of the
surface normals. Planar objects inherently have a majority
of their normals pointing in a common direction, yielding a
low standard deviation. On the other hand, organic surfaces
tend to be more “rounded” (often symmetrically so), leading
to diverse distributions and higher standard deviations. Size

is very also descriptive; depth data allows for reasonable
approximation of real world size - a notepad is easily distin-
guished from a table. Additionally, aggregate surface orien-
tation immediately disambiguates tables from walls. These
simple features worked well in our prototype implementa-
tion given the small set of surfaces to distinguish, but a
more general solution would require more sophisticated
features (e.g., see [13] for depth-driven object recognition).
Each class of surface defines a unique graphics placement
heuristic (an offset vector from the surface’s lock point) and
default size. For example, a hand has a hand-sized interface
while a wall has a wall-sized interface. Lastly, once the sur-
face is identified and the interface is placed, we track the
surface change frame-to-frame and accordingly adjust the
interface to reflect this change. This mimics the expectation
of the user, that once the interface is established, it should
remain “glued” to the surface it is projected on. Optionally,
given the real-world depth data, the interface can be further
refined and fitted to the available area on the surface, by
performing depth-constrained flood filling from the sur-
face’s placement point.
Unfortunately, this classification-driven approach suffers
from scalability issues, since it is simply not possible to
build a classifier for every conceivable surface. However,
for common surfaces that have unique placement considera-
tions, this approach is attractive and viable.
User-Specified Placement
An entirely different approach is to let the user define the
interactive area. This sidesteps much of the complexity de-
scribed above, as users have a good innate sense of where
interfaces should be centered and how big they should be.
This exposes a high level of customization to users. Howev-
er, this flexibility comes at the expense of requiring addi-
tional user interaction before an interface can be utilized.
In our prototype system, we provide two mechanisms for
user specified placement, although many options are possi-

Figure 9. To sidestep complexities in automatically positioning
and sizing interfaces, users can simply “click-and-drag” inter-

faces wherever desired.

Figure 8. Possible lock points on the hand: Green: absolute
center of surface bounds. Yellow: centroid of surface’s pix-
els. Red: 10cm offset along major axis from upper extent.
Blue: midpoint between wrist and middle finger tip.

Figure 10. We created a simple phone keypad application; in this sequence, time progresses left to right.

ble. The simplest is for a user to “click” on a surface, caus-
ing a generically sized interface to be centered at that loca-
tion. Alternatively a user can click and drag to position and
size in one continuous action (Figure 9). As with the classi-
fication-driven approach, once the interface is established,
we update its location and orientation frame-by-frame.
Compositing Interfaces in 3D Space
In our proof-of-concept implementation, we model interfac-
es as planar 2D surfaces, which are positioned and oriented
in 3D space. Their 3D placement is computed in relation to
the aforementioned lock points and surface orientations so
that they are correctly updated as surfaces move. Displaying
such interfaces on top of any available surface is straight-
forward since our projector is precisely calibrated to the
depth camera coordinate system. We simply create a 3D
scene containing all active surfaces and then render this
scene from the perspective of the projector using the projec-
tor/camera calibration discussed earlier (Figure 6).While we
currently render only planar interfaces, our approach easily
lends itself to experimenting with 3D interfaces that take
into account the true geometry of the projected surface.
By defining our interfaces in the 3D world space (i.e., using
millimeters), they are projected with correct scale and dis-
tortion regardless of where the surface is with respect to the
camera (as long as it is visible). Our aim is that the interac-
tive surfaces appear to the user “glued” to the physical sur-
face. 3D rendering also automatically takes into account the
Z-ordering of our interfaces.
Simultaneously, we use the 3D scene to ray cast fingertip
positions onto our planar interfaces. Finger inputs are re-
ported as X/Y coordinates in their local 2D space, which
simplifies interface development and enables detection and
tracking of finger hover. Although it is possible to use Z
distance for click detection, we found our flood-fill heuristic
approach to be most accurate.

EXAMPLE APPLICATIONS
With OmniTouch providing capabilities similar to that of
mice and touchscreens, the application space is expansive.
Over the course of development, we created many small,
interactive applications that ran on top of our OmniTouch
engine (Figures 1, 10 and 11). These served both as proof of
concept and also as a gauge of input accuracy and real
world applicability. We briefly describe a few exemplary
applications; please also refer to the Video Figure.
Conventional Interaction
With the ability to click, buttoned interfaces are immediate-
ly possible; dragging enables interfaces to be scrolled. As a
simple demonstration, we built a phone keypad application
(Figure 10). To prevent accidental dialing, a “slide to un-
lock” feature is included. We also experimented with hier-
archical menu navigation, visualized as a scrollable list with
clickable items (Figure 11C). This class of interface is prev-
alent in contemporary mobile devices. Additionally, we
built a full keyboard, potentially allowing for text entry on
the go (Figure 11A). Lastly, a “post-it” application allows
users to write quick notes on their palm (Figure 11E).
To showcase our system’s multitouch capabilities, we de-
veloped a simple annotation application, where each finger
generates a stroke; a small palette of highlight colors is pro-
vided (Figure 1). We also implemented the ubiquitous map
panning and zooming demo, which is controlled by finger
drags and pinching respectively (Figure 11D).
Multi Surface Interaction
As OmniTouch can track multiple objects within its field of
view, it is possible to support interaction on multiple surfac-
es and levels. As a proof of concept, we created a painting
application for walls. We use the left hand as the color pal-
let, which can be raised and lowered as needed (Figure
11G). Similarly, when working at a table, the hand may
serve as an application switcher (Figure 11F).

Figure 11. Some of the applications we developed that run on top of OmniTouch. See text for descriptions.

Making Use of Rich Metadata
Our surface tracking procedure generates a variety of
metadata, such as whether a surface is public or private,
organic or flat, big or small, and vertically or horizontally
oriented – all of which are exposed to applications wishing
to be more context sensitive. For example, the orientation of
a hand or handheld surface could be used to determine if the
content is visible to only the user or to others (Figure 12)
[14]. Additionally, because the geometry between the
shoulders and head is fixed, view-dependent VR [31] is
possible. Finally, the position of surfaces within the field of
view could be used to enable peephole displays [35].
USER STUDY
To evaluate and demonstrate the feasibility of our approach,
we conducted a user study that sought to quantify the key
performance characteristics of our system. At a high level,
can OmniTouch correctly register touch events and how
accurately can they be localized? At a meta-level, how large
would interface elements have to be to enable reliable oper-
ation of an ad hoc interface rendered on the hand? To place
our system’s performance in context, we compare our
method to the gold standard - capacitive touch screens -
drawing performance results from the literature [9,15,25].
Participants
We recruited 12 participants from our local metropolitan
area (6 female), ranging in age from 23 to 49, with a mean
of 34. All participants were right handed and were required
to have some experience with touch screen devices. The
study took approximately one hour and included a gratuity.
Test Surfaces
Our goal with OmniTouch was to support interaction on
three classes of surface: 1) on-body, 2) objects held in the
hands, and 3) fixed surfaces in the environment. For our
user study, we included one example from each class: the
hand, a note pad held in the hand, and a wall. Additionally,
we included the forearm (arm), as on-body interaction was a

particular focus of our work and also challenging from a
sensing perspective. Moreover, the arm served as a nice
contrast to the hand, which, although highly irregular, is
still fairly planar. Finally, these four surfaces, seen in Figure
13, represent ad hoc surfaces our system would likely use.
Procedure
We first fit participants with our shoulder-mounted system.
Once the frame was secured and comfortable, participants
were allowed to play with the phone keypad example appli-
cation. This let them find comfortable positions to hold their
arms, both for being rendered on and for pointing, and also
to practice using the system. During this period, the experi-
menters provided feedback to help them become more accu-
rate. This training period lasted a maximum of 10 minutes,
though most participants felt confident using the system
after just a few minutes of use.
Our primary user study interface consisted of 9 crosshair
targets, laid out in a 3x3 pattern (Figure 13). Columns and
rows were spaced 3cm apart; the crosshairs were 2x2cm in
size (9x9cm total size). In each trial, one crosshair was ren-
dered in red. Users “clicked” this crosshair as accurately as
they could. If a click was detected, the system would beep
and a green circle was placed around the target crosshair
(see Figure 13, wall). The experimenter advanced the inter-

Figure 13. The four surfaces we tested and user click distributions. 95% confidence ellipses shown in green. Axis units in mm.

Figure 12. OmniTouch can infer if a surface is

public or private from orientation features.

face to the next trial after each click attempt, regardless of
whether or not it was detected. Each of the 9 crosshair loca-
tions was repeated 4 times, for a total of 36 click trials;
presentation order was randomized.
This interface and procedure was used for each of the four
test surfaces: hand, arm, pad and wall. Before each surface,
users were allowed to briefly practice before data collection
began. For the wall condition, participants were asked to
stand approximately 30cm from the wall. For the other three
surfaces, users found a comfortable position. The ordering
of the surfaces was randomized to compensate for any order
effects. We ran two rounds of data collection to investigate
if there were any effects from learning, fatigue, or slight
variations in posture. This produced 288 trials (2 rounds x 4
surfaces x 36 click trials) per participant.
To quantify how our system performed at different distanc-
es, we included two additional rounds of data collection.
Participants were asked to hold their hands at arm length
(far), at an “average and comfortable” distance (average),
and as close to the system as possible, while still being able
to click with their right hand (close). We also tested these
three distances with the pad surface; the ordering of the pad
and hand distance trials was alternated between participants.
This procedure produced 216 trials (2 surfaces x 3 distances
x 36 click trials) per participant.
The tests described above were primarily designed to isolate
click segmentation and spatial accuracy. A key feature of
OmniTouch is its ability to track fingers while dragging. To
better understand the spatial performance of finger drags,
we created a drawing experiment interface (Figure 11H). In
this application, users were presented one of six possible
shapes: up line, down line, left line, right line, clockwise
circle, counterclockwise circle. Each shape was repeated 4
times, for a total of 24 drawing trials per participant.
Direction of the stroke was indicated using a green arrow
and a red “stop”. Participants were asked to draw as closely
to the white path as possible, balancing speed and accuracy.
Unlike in the crosshair experiments, users received graph-
ical feedback in the form of a red path illustrating their
stroke. This allowed participants to compensate for any in-
accuracies in their movement and the system’s fingertip
estimation. We chose to conduct this experiment on the pad,
as a flat surface minimized external confounds (e.g., user
inaccuracy caused by the irregular surface of the hands).
RESULTS & DISCUSSION
Our 12 participants produced 3456 click trials on our four
surfaces, a further 2592 in our distance experiment, and 288
drawn shapes. No effect was found between the two rounds
of crosshair trials (e.g., from fatigue or learning). Addition-
ally, there were no significant performance differences be-
tween participants. Thus, data was combined for each sur-
face. Data from the distance and the dragging trials was
kept separate for independent analysis. Ultimately, these
results should be considered a performance baseline, as sig-
nificant improvements in depth camera resolution and sensi-
tivity are forthcoming.

Finger Click Detection
We combined data from all of our crosshair-clicking exper-
iments (two rounds of four surfaces and two rounds of three
distances) – a total of 6048 click trials. Of these, 96.5%
correctly received exactly one finger click event. Regarding
errors, 50 trials (0.8%) had no click event (i.e., the system
missed the participant’s finger click), 154 trials (2.5%) had
two click events (i.e., the system incorrectly thought the
user clicked twice, or believed a secondary finger to have
clicked), and 8 trials (0.1%) had three click events.
For the user study, we configured OmniTouch to record all
input events, without any high-level mechanism for click
rejection, as typically found in interactive systems. Of the
162 trials receiving double and triple clicks, 94.8% percent
occurred within 500ms of the first click event. Thus, with a
simple timeout, single finger click segmentation accuracy
would be 98.9%.
Of the 50 trials (0.8%) with missed clicks, 33 were contrib-
uted by the three left-most crosshairs in the arm condition
(see Figure 13, arm). As noted in [23], participants tend to
hook their fingers when targeting items on reverse slopes,
which is the case for the right hand targeting the left most
side of the left forearm. One possible explanation for this
increased error is that hooking occludes the contact point
and also shortens the finger’s profile from the camera’s per-
spective, which can cause tracking loss. Otherwise, the dis-
tribution of missed-click and multi-click errors was evenly
spread over all crosshair positions and surface conditions.
Finally, we compared click segmentation performance at the
three distances tested in the user study (hand/pad surfaces at
close/average/far distances). However, no significant ef-
fects were found.
Finger Click Spatial Accuracy
Importantly, our results represent the cumulative error of
the system and the user. There are three primary sources of
error: 1) misalignment and non-linearities in the projec-
tor/camera calibration (e.g., a button is projected some-
where slightly different from where the camera believes it
to be), 2) inaccuracy in the fingertip estimation, especially
when the tip fuses with the surface during clicks, and 3)
user inaccuracy when clicking targets, (e.g., due to “fat fin-
gers” and varying perception of one’s finger input point
[9]). Although some of these factors are outside of our con-
trol, they model the real-world performance of our system.
There are two important and independent measures for ana-
lyzing targeting performance: offset and spread [4,9,25].
Finger Click Spatial Offset
Analysis revealed there was a small systematic offset be-
tween where OmniTouch believed the user clicked and
where the user believed they clicked. Specifically, we found
an average offset of 11.7mm to the left of targets across all
conditions and participants, in agreement with previous
findings in the touchscreen literature [15,25]. Y-offset for
the hand, arm and pad surfaces was similarly an average of
1.1mm above the true target. Finger touches on the wall,
however, were offset downwards an average 10.0mm, pos-

sibly due to its extreme angle (at roughly chest height, and
oriented vertically). Finally, distance appears to have no
significant effect on offset.
Because offsets are systematic across-users and across-
surfaces, we simply apply a post-hoc X/Y offset to our sub-
sequent data analysis. These offset values could be trivially
added to our system’s real-time finger point estimations.
The only case we handle specially is the wall, which is rec-
ognized by OmniTouch using size and orientation infor-
mation. With the wall, points are shifted upward 10.0mm.
For maximum generality, we did not compute or apply any
per-user offset, though this has been shown to significantly
increase accuracy [9,30].
Finger Click Spatial Precision
The spatial precision of OmniTouch is visualized in Figure
13, which depicts 95% confidence ellipses for the nine
crosshair targets on our four test surfaces. For analysis, we
removed 93 outliers in order to plot our results side-by-side
with those in [9]. Outliers were defined as points lying
greater than three standard deviations away from the mean
difference between points and the target. Similar to [9], out-
liers were a mix of user error, user inaccuracy, and tracking
errors.
Figure 14 displays the minimum button diameter necessary
to correctly capture 95% of touches for each surface. We
also include two points of comparison from [9] - an estima-
tion of conventional touch input (derived from a capacitive
touchpad) and results from crosshair trials using a high-
resolution optical fingerprint scanner. Exceeding our expec-
tations, OmniTouch on a wall appears to be nearly as accu-
rate as conventional touchscreens (16.2mm vs. 15.0mm).
The hand requires buttons to be 22.5mm in diameter, offer-
ing the highest un-instrumented, on-body button density to
date [8,24,32]. The pad performs similarly to the hand.
The arm is our least accurate surface, requiring targets ap-
proximately 70% larger than a conventional touch screen to
achieve the same 95% touch accuracy (25.7mm vs.
15.0mm). This degradation in error comes chiefly from but-
tons located on the sides of the arms, where curvature is
high (see Figure 13). Given that the arm is well suited to
narrow, tall interfaces (Figure 11C), we also computed the
accuracy using only the center column of crosshair targets,
which proved to be quite accurate (20.5mm, SD=5.1mm).

Effects of Distance on Spatial Precision
We previously reported that distance had no significant ef-
fect on click segmentation accuracy or on spatial offset.
However, there does appear to be a significant loss of preci-
sion when interacting at far distances. Using a Bonferroni-
corrected all-pairs t-test, we found no significant difference
in performance between the hand and pad at our three test
distances. We then combined hand and pad distance trials
into aggregated far, average and close data sets. Overall, the
far condition is significantly worse performing than both
average and close distances (both p<.001) – requiring but-
tons to be roughly 60% larger to operate at around arm’s
length. There is no significant difference between average
and close distances. Figure 15 illustrates these results as
button diameters necessary to encompass 95% of touches.
Finger Drag Spatial Accuracy
In our dragging (drawing) experiment (Figure 11H), we
included vertical and horizontal lines, as well as circles, in
order to assess X, Y and X+Y dragging performance. For
both lines and circles, we use the absolute Euclidian dis-
tance from the closest point on the desired path as our error
distance metric. We did not apply our global X/Y offset to
stroke points as live graphical feedback was provided. Such
feedback allowed participants to compensate for any system
inaccuracies as they performed the task.
On average, participants deviated from the desired path by
just 6.3mm (mean SD=3.9mm). There is no significant per-
formance difference between shapes, 1D or 2D trials, or in
X- or Y-axes.
FUTURE WORK
Several immediate avenues of future work exist. Foremost,
we focused on interfaces that were 2D and primarily recti-
linear. Our bodies, however, are neither. If we are to have
interfaces on organic surfaces [10], it will be valuable to
rethink classic interface paradigms, and consider how our
unique form can contribute to a computing experience.
There are also many opportunities to enhance the approach-
es in this work. For example, it is possible to create 3D
meshes of objects, allowing for distortion free projection
onto non-planar surfaces (i.e., projective texturing). Addi-
tionally, postures and gestures of the arms and hands could
be used for input. For example, a “telephone” gesture with
hands could summon a keypad on the arm, while a “back of
hand” pose could render a watch on the wrist (Figure 11B).

Figure 15. Button diameter needed to encompass 95% of
touches. Error bars show standard deviation across trials.

Figure 14. Button diameter necessary to encompass 95% of

touches. Error bars denote standard deviation across all
trials. Results in orange from [9].

Finally, there are many fascinating qualitative questions
surrounding on-body interaction. For example, how com-
fortable are people using their own bodies as interactive
platforms? What are the social implications if other people
want to use these interfaces? Is it acceptable to control an
interface on someone else’s body? Such interactive capa-
bilities may open new questions in proxemics research.

CONCLUSION
In this paper, we described and evaluated our proof-of-
concept implementation of OmniTouch. Results suggest
interactions traditionally reserved for dedicated touch sur-
faces can now move into the environment, in an ad hoc
fashion. Although our current prototype is fairly large, there
are no significant barriers to miniaturization. It is entirely
possible that a future incarnation of OmniTouch could be
the size of a box of matches, worn as pendent or watch.
Thus, the benefit of extreme portability can be combined
with the ease and accuracy of interaction on large, physical
surfaces.
The chief goal of the present work is to demonstrate that
touch input can be achieved on everyday surfaces, including
the human body. This brings to reality many intriguing in-
teractions proposed in earlier work. In this paper, we only
graze the surface of interactions enabled by making touch
input available everywhere. We answer the fundamental
question of whether or not it is possible, but in many ways,
the hardest work lies ahead.

ACKNOWLEDGMENTS
We thank PrimeSense and Ohad Shvueli for the short range
depth camera used in this research.

REFERENCES
1. Argyros, A.A., and Lourakis, M.I.A. Vision-based interpreta-

tion of hand gestures for remote control of a computer mouse.
In Proc. ECCV ‘06 Workshop on Computer Vision in HCI.
LNCS 3979. 40–51.

2. Benko, H. Saponas, T.S., Morris, D., and Tan, D. Enhancing
input on and above the interactive surface with muscle sensing.
In Proc. ITS '09. 93–100.

3. Cao, X., and Balakrishnan, R. Interacting with dynamically
defined information spaces using a handheld projector and a
pen. In Proc. UIST ’06. 225–234.

4. Chapanis, A. Theory and methods for analyzing errors in man-
machine systems. Annals of the New York Academy of Sci-
ence 51, Human Engineering (1951), 1179–1203.

5. DeMenthon D. and Davis, L.S. Model-based object pose in 25
lines of code. International Journal of Computer Vision, 15,
(1995). 123–141.

6. Erol, A., Bebis, G., Nicolescu, M., Boyle, R.D., and Twombly,
X. Vision-based hand pose estimation: A review. Computer
Vision and Image Understanding. 108, (2007), 52–73.

7. Gustafson, S., Bierwirth, D., and Baudisch, P. Imaginary inter-
faces: spatial interaction with empty hands and without visual
feedback. In Proc. UIST ’10. 3–12.

8. Harrison, C., Tan, D., and Morris, D. Skinput: appropriating
the body as an input surface. In Proc. CHI '10. 453–462.

9. Holz, C. and Baudisch, P. The generalized perceived input
point model and how to double touch accuracy by extracting
fingerprints. In Proc. CHI '10, 581–590.

10. Holman, D. and Vertegaal, R. Organic user interfaces: design-
ing computers in any way, shape, or form. Comm. of the ACM,
51, 6 (2008). 48–55.

11. Hua, H., Brown, L., and Gao, C. Scape: Supporting stereoscop-
ic collaboration in augmented and projective environments.
IEEE Comput. Graph. Appl. 24, 1 (2004), 66–75.

12. Kane, S., Avrahami, D., Wobbrock, J., Harrison, B., Rea, A.,
Philipose, M. and LaMarca, A. Bonfire: A nomadic system for
hybrid laptop-tabletop interaction. In Proc. UIST '09. 129–138.

13. Lai, K., Bo, L., Ren, X., and Fox, D. Sparse Distance Learning
for Object Recognition Combining RGB and Depth Infor-
mation. In Proc. ICRA '11.

14. Lee, J.C., Hudson, S.E. and Tse, E. Foldable interactive dis-
plays. In Proc. UIST '08. 287–290.

15. Lewis, R.J. Literature review of touch-screen research from
1980 to 1992. IBM Technical Report, 54.694. Aug 20, 1993.

16. MicroVision, Inc. http://www.microvision.com
17. McFarlane, D., and Wilder, S. Interactive dirt: Increasing mo-

bile work performance with a wearable projector-camera sys-
tem. In Proc. UbiComp ‘09, 205-214.

18. Mistry, P., Maes, P., and Chang, L. WUW - wear Ur world: a
wearable gestural interface. In CHI ‘09 Ext. Abst. 4111–4116.

19. Park, Y. Han, S., Park, J. and Cho, Y. Touch key design for tar-
get selection on a mobile phone. Proc. MobileHCI ‘08. 423–426.

20. Pinhanez, C. S. The Everywhere Displays projector: A device
to create ubiquitous graphical interfaces. In Proc. UBICOMP
‘01. 315–331.

21. PrimeSense Ltd. http://www.primesense.com.
22. Raskar, R., Beardsley, P., van Baar, J., Wang, Y., Dietz, P.,

Lee, J., Leigh, D., and Willwacher, T. RFIG lamps: interacting
with a self-describing world via photosensing wireless tags and
projectors. In Proc. SIGGRAPH ’04. 406–415.

23. Roudaut, A, Pohl, H. and Baudisch, P. Touch input on curved
surfaces. In Proc. CHI ’11. 1011-1020.

24. Saponas, T.S., Tan, D.S., Morris, D., Balakrishnan, R., Turner,
J., and Landay, J. A. Enabling always-available input with
muscle-computer interfaces. In Proc. UIST '09. 167–176.

25. Sears, A. Improving touchscreen keyboards: Design issues and
a comparison with other devices. IEEE Computer, 3 (1991),
253–269.

26. Starner, T., Auxier, J., Ashbrook, D., and Gandy, M. The Ges-
ture Pendant: A self-illuminating, wearable, infrared computer
vision system for home automation control and medical moni-
toring. In Proc. ISWC ‘00, 87–94.

27. Sturman, D.J. and Zeltzer, D. A Survey of glove-based input.
IEEE Comp Graph and Appl, 14, 1 (1994). 30–39.

28. Tan, D., Morris, D., and Saponas, T.S. Interfaces on the go.
ACM XRDS, 16, 4 (2010), 30–34.

29. Tomasi, C., Rafii, A. and Torunoglu, I. Full-size projection
keyboard for handheld devices. Comm. of the ACM, 46, 7
(2003), 70–75.

30. Wang, F. and Ren, X. Empirical evaluation for finger input prop-
erties in multi-touch interaction. In Proc. CHI ’09. 1063–1072.

31. Ware, C., Arthur, K. and Booth, K.S. Fish tank virtual reality.
In Proc. CHI '93. 37–42.

32. Wilson, A. and Benko, H. Combining multiple depth cameras
and projectors for interactions on, above and between surfaces.
In Proc. UIST ’10. 273–282.

33. Wilson, A.D. PlayAnywhere: a compact interactive tabletop
projection-vision system. In Proc. UIST '05. 83–92.

34. Wilson, A.D. Using a depth camera as a touch sensor. In Proc.
ITS '10. 69–72.

35. Yee, K. Peephole displays: pen interaction on spatially aware
handheld computers. In Proc. CHI '03. 1–8.

