Wireless networking using conductive surfaces

Justin Chan, Anran Wang, Vikram Iyer, Shyam Gollakota

Existing wireless technologies

Ignore a large class of use cases

Devices often placed on common surface

Devices often placed on common surface

Shelves

Walls

Leveraging surfaces for communication

Can we achieve high data rate communication when devices come in contact with a common surface?

Fundamental challenge

Wood

Sheetrock

Plastic

Common surface materials are not conductive

Our approach: conductive material

Our approach: conductive material

Materials can be used for wireless communication

Tiny contact point

Tiny contact point

8 mm

Surface MIMO testbed

16 feet

Do conductive surfaces propagate RF signals?

Do conductive surfaces propagate RF signals?

Do conductive surfaces propagate RF signals?

Communication is due to contact with the surface

Effect of substrate

Without objects

Time (ns)

Without objects

0 50 100 150 200 250 300 Time (ns)

Without objects

Without objects

Delay spread addressable with OFDM cyclic prefix

Does grounding matter?

With ground

Without ground

Two new ways to communicate using surfaces

MIMO for singleantenna devices

Gigabit communication

Traditional MIMO

Transmitter

Receivers

Traditional MIMO

Transmitter

Receivers

Key insight

Exploit surface as additional spatial path

Surface MIMO

Surface MIMO

Surface MIMO

Traditional MIMO system

Traditional MIMO system

Too large for a mobile device

Traditional MIMO system

Streams become too correlated

Surface MIMO contact separation

Achieves MIMO with 1 cm separation

Propagation on surface is slower than over the air

Surface channel creates additional spatial path

How well does Surface MIMO work in practice?

- 1) Over the air 1x1 system
- 2 Over the air MIMO system
- Surface MIMO without objects
- Surface MIMO with objects

Throughput gains

Why are we better than traditional MIMO?

- (1) Surface acts like an antenna
- Multi path on surface is stronger than multi path over the air

Cluttered Surface MIMO testbed

2x2 Surface MIMO gains Over the 2.6x air 1x1 Traditional 1.2x MIMO

	2x2	3x3
	Surface MIMO gains	Surface MIMO gains
Over the air 1x1	2.6x	3x
Traditional MIMO	1.2x	1.3x

Contact separation

0 2 4 6 8 10 12 14 16 18 Distance (feet)

Channel state information

Channel state information

Received signal strength

Condition number

Two new ways to communicate using surfaces

MIMO for singleantenna devices

Gigabit communication

Gigabit surface communication

Gigabit surface communication

Stitching together ISM bands

- (1) Around a monopole antenna
- (2) In front of the spray painted surface
- (3) Behind the spray painted surface

Around monopole antenna

Front of spraypainted surface

Back of spraypainted surface

antenna

Less over the air interference

What capacity can we achieve?

Link rates of 776 Mbps - 1.27 Gbps

Can we share the surface?

Same channels

Different channels

Conclusion

- Detailed characterization of conductive paint and cloth for communication
- Enable MIMO communication between small devices via conductive surfaces
- First communication design to support
 Gbps data rates over surfaces