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ABSTRACT

Radio Frequency (RF) fingerprinting, based on WiFi or cellular sig-
nals, has been a popular approach to indoor localization. However,
its adoption in the real world has been stymied by the need for site-
specific calibration, i.e., the creation of a training data set compris-
ing WiFi measurements at known locations in the space of interest.
While efforts have been made to reduce this calibration effort using
modeling, the need for measurements from known locations still
remains a bottleneck. In this paper, we present Zee – a system that
makes the calibration zero-effort, by enabling training data to be
crowdsourced without any explicit effort on the part of users.

Zee leverages the inertial sensors (e.g., accelerometer, compass,
gyroscope) present in the mobile devices such as smartphones car-
ried by users, to track them as they traverse an indoor environment,
while simultaneously performing WiFi scans. Zee is designed to
run in the background on a device without requiring any explicit
user participation. The only site-specific input that Zee depends
on is a map showing the pathways (e.g., hallways) and barriers
(e.g., walls). A significant challenge that Zee surmounts is to track
users without any a priori, user-specific knowledge such as the
user’s initial location, stride-length, or phone placement. Zee em-
ploys a suite of novel techniques to infer location over time: (a)
placement-independent step counting and orientation estimation,
(b) augmented particle filtering to simultaneously estimate loca-
tion and user-specific walk characteristics such as the stride length,
(c) back propagation to go back and improve the accuracy of lo-
calization in the past, and (d) WiFi-based particle initialization to
enable faster convergence. We present an evaluation of Zee in a
large office building.

Categories and Subject Descriptors
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Keywords

Indoor localization, WiFi, crowdsourcing, inertial tracking

∗The author was an intern at Microsoft Research India during the
course of this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’12, August 22–26, 2012, Istanbul, Turkey.
Copyright 2012 ACM 978-1-4503-1159-5/12/08 ...$15.00.

1. INTRODUCTION
RF fingerprinting of WiFi signals is a popular approach to in-

door localization. Typically, there is an initial training or calibra-
tion phase during which received signal strength (RSS) measure-
ments from multiple WiFi access points are recorded at known lo-
cations. Then, when a device is to be located, RSS measurements
from proximate APs are matched against the training data, either
deterministically [3] or probabilistically [32], to estimate location.

The need for calibration is a key bottleneck since it is labour-
intensive. Further, it needs to be repeated for each new space and
also every time there is a significant change in the space (e.g., when
new APs are added or existing ones repositioned). While efforts
have been made to reduce the calibration effort using RF modeling,
these suffer from various limitations, including the need for at least
some data from known locations [9], the need for control over the
APs and knowledge of their locations [11], and loss in accuracy
because measurements are made at fewer points than ideal to save
effort. These limitations also come in the way of a crowdsourcing-
based approach to training because, for instance, on a mall floor, the
locations of APs installed by multiple providers and stores would
not be known, and obtaining a GPS lock might not be feasible at
any location.

In this paper we enable zero-effort crowdsourcing of WiFi mea-
surements in indoor spaces by developing a system called Zee (name
derived from the first syllable of “zero”). Our vision is of users
carrying smartphones who walk around in the indoor space of in-
terest in normal course (e.g., stroll through a mall), with each user
traversing a subset of the paths in the space. We do not assume
knowledge of where within the space a user walks or even the start-
ing point of the user’s walk. As well, we do not assume knowledge
of the placement of a user’s smartphone, i.e., whether it is in their
hand, shirt pocket, bag, or elsewhere, which also means that we do
not know the orientation of the phone relative to the user’s direc-
tion of motion. All of these elements accord well with the needs
of crowdsourcing, where little can be assumed about users, and ex-
plicit input or other action from users is best avoided.

The only external input that Zee depends on is a map of the in-
door space of interest, which we do not view as onerous since a
map would be needed anyway for the purposes of location-based
applications such as navigation. Armed with just the map, Zee
uses WiFi and inertial sensor measurements crowdsourced from the
users’ smartphones to automatically infer location over time and
thereby construct a WiFi training set (i.e., WiFi RSS measurements
annotated with location information).

The key idea behind the automatic inferencing of location in Zee
is to combine the sensor information with the constraints imposed
by the map (e.g., that a user cannot walk through a wall or other bar-
rier marked on the map), thereby filtering out infeasible locations



over time and converging on the true location. As an example, the
inertial sensors such as accelerometer and compass might indicate
that the user walked in a zigzag path, taking a certain number of
steps in a certain (unknown) direction, then turning 90 ◦ to the right
and continuing the walk, and finally turning 90 ◦ to the left to take
a few more paces and then stopping. While the above information
does not, by itself, reveal location, it could when viewed together
with a floor map. For instance, the map might indicate that there is
only one pathway on the floor that could accommodate the kind of
zigzag trajectory observed, say the path from the entrance of a mall
to a particular store. Thus, at the conclusion of the walk, we can
infer that the user’s ending location must be the store, and then we
can trace back and infer that their starting location must have been
the entrance.

To codify the above intuition in Zee, we incorporate the un-
certainty arising from sensing and the constraints imposed by the
map, into a novel augmented particle filtering framework. Whereas
particle filtering in the context of localization has typically used
particles only to represent the uncertainty in location, we create
multi-dimensional particles that also incorporate the uncertainty in
other aspects such as the stride length of a user and their direc-
tion of walk. Augmented particle filtering then enables the esti-
mation of these latter variables concurrently with the estimation of
location. To speed up the convergence of particle filtering, we use
two techniques to estimate better priors for the variables being es-
timated: placement-independent motion estimation to estimate the
step count and the approximate orientation (or heading offset) of a
device relative to the direction of walk, and WiFi-based initializa-

tion to leverage partial WiFi information to make an initial guess of
the location(s) where a device might be. Finally, since the uncer-
tainty in location would tend to reduce with time as a user takes a
longer walk with more turns, we use backward belief propagation

to take advantage of the greater certainty in location at a later point
in time to trace back and reduce uncertainty in location at earlier
times, post facto.

Concurrently with estimating location, Zee performs WiFi scans
and records the results indexed by time. As and when the location
estimate for a particular time becomes available, the correspond-
ing WiFi measurement is annotated with the estimated location,
thereby adding a record to the WiFi training set. Thus, Zee pro-
vides a way to crowdsource WiFi measurements without requiring
any explicit effort on the part of users. To evaluate the quality of
the crowdsourced training data set, we feed it into Horus [32], a
well-known WiFi fingerprinting-based localization technique, and
EZ [9], a newer modeling-based technique. We find that with the
crowdsourced training data set, Horus and EZ achieve a median lo-
calization error of about 3m, which is comparable to the median
localization error of 3.5m achieved with a training data set that is
explicitly measured.

Thus, Zee offers a truly zero-effort solution for crowdsourcing
WiFi data for the purpose of indoor localization, by leveraging the
walks that users take through the space of interest in normal course.
We view this as a significant contribution of our work, one that
could be a key enabler of WiFi-based localization in real-world set-
tings. As well as providing a way of constructing a training data set
for later use, another key contribution of Zee is a way to perform
accurate tracking of a walking user for the purposes of real-time
applications such as indoor navigation.

2. BACKGROUND AND RELATED WORK
Zee draws on prior work in multiple areas, chiefly WiFi-based

localization, robotic navigation, and inertial sensing.

2.1 Infrastructure-Based Localization Systems
Early systems required the deployment of special-purpose infras-

tructure in the indoor space to enable localization. The inability to
use GPS indoors has led to myriad approaches based on alterna-
tive signals, ranging from infrared [26] to acoustic [27, 19] and vi-
sual [28]. There have also been localization systems based on a de-
ployment of RF transmitters and sniffers [15] or RFID [18]. While
each of these approaches offers certain advantages (e.g., high accu-
racy in the case of acoustic ranging), the need for special-purpose
hardware and infrastructure is a significant challenge.

2.2 RF Fingerprinting based Localization
Localization based on measuring the RF signal of a wireless

LAN has the significant cost advantage of leveraging an existing
infrastructure. A popular approach, pioneered by Radar [3], is to
employ received signal strength (RSS) based fingerprinting of loca-
tions in the space of interest, where typically multiple access points
(APs) are heard at each location. While Radar used a simple, de-
terministic fingerprinting and matching scheme, Horus [32] devel-
oped a more sophisticated and accurate approach wherein the RSS
measurements corresponding to each location and AP are repre-
sented as a probability distribution and matching is performed us-
ing the maximum likelihood criterion. SurroundSense [2] extends
this idea and builds a map using several features found in typical
indoor spaces such as ambient sound, light, color, etc., in addition
to WiFi RSS. Several other improvements over and extensions of
the basic RF fingerprinting based localization have been proposed,
such as the incorporation of mobility constraints [12] and an exten-
sion to outdoor settings [8].

The above approaches depend on calibration of the space of in-
terest to construct a training data set comprising RSS measurements
at known locations. Such calibration tends to be onerous, more so
because it has to be repeated for every new space and each time
there is a significant change in a given space (e.g., a change in AP
placement). Zee is aimed squarely at eliminating the need for such
explicit calibration effort.

2.3 Modeling instead of Calibration
An alternative to empirical calibration is to use an RF propaga-

tion model to estimate the RSS, Px, at a given location x based
on the the transmit power, P0, and the distance, d0x between the
transmitter and the location x. A popular model is the log-distance
path-loss model, which models the RSS (in dBm) as Px = Po −
γlog(d0x) +N , where N represents a noise term [20]. Extensions
of this model have incorporated the presence of and the attenuation
due to obstructions such as walls.

Radar [3] included a model-based variant, which estimated RSS
at various locations using knowledge of the AP locations and trans-
mit powers, and a floor map. Radar also proposed the idea of RF
environment profiling [4], where measurements between the (sta-
tionary) access points is used to characterize the changing RF en-
vironment. This idea was leveraged in [17], to develop a zero-
configuration localization system, where APs make RSS measure-
ments, with respect to clients and also each other. The measure-
ments made between the APs are used to construct a model that
maps RSS to distance. This model is then used locate clients through
trilateration. This scheme, however, requires the AP software to be
modified and so cannot make use of off-the-shelf APs.

More recently, efforts have been made to use modeling with min-
imal assumptions. EZ [9] only requires measurements at a few
known client locations and WiGem [11] only requires knowledge
of AP locations and the ability to measure the client signals as re-



ceived at the APs. The reduced measurement effort with a model-
ing based approach typically comes at the cost of reduced accuracy.

Zee avoids the need for measurement at any known location or
any knowledge or control over AP locations and measurements.
This, we believe, makes it much more amenable to a crowdsourc-
ing approach because, for instance, a public space such as a mall
might have APs deployed by multiple providers and moreover the
absence of GPS coverage might make it challenging to make any
measurements at all at known locations. Equally importantly, Zee
is able to avoid the loss of accuracy inherent in modeling based on
limited data. This is particularly relevant in the context of accurate
but measurement-intensive techniques such as Horus [32].

2.4 Alternatives to RSS-based Localization
Several alternatives to RSS have also been considered. In par-

ticular, detailed physical layer information has been used to finger-
print both devices [7, 5] and locations [23]. We view the contribu-
tion of Zee as being orthogonal to these; the above non-RSS-based
approaches also require a training set to be constructed and could
benefit from the zero-effort calibration made possible by Zee.

On the other hand, there has also been research on leveraging
non-RSS information from RF beacons in a way that does not re-
quire any calibration. For instance, [13] simply estimates a client’s
location as the centroid of the known locations of the APs heard,
without regard to the RSS, which leads to loss in accuracy. There
has also been work on leveraging time of flight [1] or angle of
arrival [31, 22] relative to APs, whose locations are assumed to
be known. However, these approaches either require specialized
and potentially expensive hardware [1, 31] or require special hu-
man effort, e.g., taking a spin while walking [22]. In Zee, we
avoid these disadvantages, making our approach more amenable
to crowdsourcing albeit with reduced accuracy compared to the ap-
proaches based on precise measurement.

2.5 Robotic Navigation
In the robotics community, there has been much work on the

Simultaneous Localization and Mapping (SLAM) problem, which
dates from the mid-1980s [24, 16]. A robot equipped with sensors,
such as laser-based ranging and cameras, is assumed to be explor-
ing the space of interest, e.g., an unmapped building. The space
is assumed to have landmarks, which are typically artificially in-
serted (e.g., barcode pasted on walls or a particular pattern painted
on the ceiling). The “mapping” problem is to determine the loca-
tions of the landmarks relative to each other whereas the “localiza-
tion” problem is to determine the location of the robot relative to
the landmarks. Estimates are updated based on an action model,
which helps relate the new location to the previous location (e.g.,
based on the number of revolutions of the robot’s wheels), as well
as sensor data (e.g., visual landmarks captured by a camera sensor).

While the early work on SLAM used Kalman Filters for esti-
mation, subsequent work has been based on Markov localization,
which is a better match in practice since it allows the robot’s po-
sition to be modeled as multi-modal and non-Gaussian probability
density functions. Of particular interest to us is the Monte Carlo
Localization (MCL), or particle filtering based, approach [10], wherein
the idea is to represent the belief in the robot’s location as weighted
random samples, or particles. The particles are then evolved based
on the action model and the sensor readings.

In Zee, we build on the key idea of particle filtering by aug-
menting particles to incorporate not only location but also other
unknowns such as the stride length of a particular user. However,
in other respects, Zee differs from the SLAM approach. In Zee, it is
humans, not robots, that are moving around in the space of interest.

This means that we have to contend with all of the complexities as-
sociated with human locomotion (e.g., measuring walking is much
more complex than odometry based on wheel revolutions). Also,
Zee does not depend on additional sensors since these are either not
present in typical consumer devices (e.g., laser ranging) or even if
present are not amenable to use in a crowdsourcing setting (e.g.,
users walking through a mall would not normally be taking pictures
with their smartphone camera). On the other hand, unlike SLAM,
Zee assumes the availability of a map and leverages the constraints
imposed by the map for the purposes of localization.

2.6 Inertial Sensing
Finally, we discuss the problem of inertial sensing of human mo-

tion for the purposes of localization. This approach is interesting
because consumer mobile devices such as smartphones are increas-
ingly being equipped with sensors such as magnetometer (or com-
pass), accelerometer, gyroscope, and barometer. These sensors,
respectively, enable measurement of direction, acceleration, rota-
tional velocity, and altitude. Knowing the starting location, a device
can, in principle, be tracked using dead-reckoning, wherein the in-
ertial sensor measurements are integrated over time [6]. However,
a significant challenge is that even small errors in inertial sensing
could be magnified by integration. Zee addresses this problem by
leveraging the constraints imposed by the map to filter out erro-
neous measurements (e.g., a measurement that has a particle pass-
ing through an obstruction such as a wall would be filtered out). A
complementary approach to prevent the accumulation of errors is
proposed in UnLoc [25], where virtual landmarks are created using
existing sensing modalities such as WiFi.

Another significant challenge is the complexity of human loco-
motion. People tend to have different stride lengths. Although there
has been work on estimating stride length based on careful model-
ing of a step using accelerometer data [14], such estimation tends
to be sensitive to the placement of the sensor, as does other es-
timation such as step counting. Indeed, the accelerometer signal
tends to be strongest and most distinctive when the sensor is foot-
mounted [21], but this does not accord with the typical placement
of a device such as a smartphone. Also, in general, the device could
be in an arbitrary orientation relative to the user’s body and their di-
rection of motion, which also makes estimation challenging.

Some of the above challenges have been addressed in [29, 30].
The use of map constraints for particle filtering, WiFi-based ini-
tialization of particles, and augmenting the particles with orienta-
tion information are all aspects inherited by Zee. In addition, this
prior work also considers transition between floors, which Zee does
not in its present incarnation. However, the prior work assumes a
foot-mounted IMU that reports step events, the stride length, and
the change in heading. These assumptions are problematic in a
smartphone-based sensing context, for the reasons noted above.

To avoid assumptions regarding the placement of the IMU or
processed step information being returned by it, we employ two
techniques in Zee. First, rather than working with sensing thresh-
olds or careful modeling that tend to be placement-dependent, we
leverage the fundamental, placement-independent property of walk-
ing — its repetitiveness and hence periodicity — to estimate un-
knowns such as the step count. Second, we augment particle filter-
ing to also estimate unknowns such as the stride length based, in
part, on the constraints imposed by the map. In addition, Zee em-
ploys a novel backward belief propagation technique to trace back
in time and infer location information post facto, thereby enabling
more effective WiFi crowdsourcing.



Figure 1: Example Scenario

3. ZEE EXAMPLE SCENARIO
All WiFi-based indoor localization schemes require a training

data set — a set of tuples (WiFi measurement,location) of WiFi
RSS measurements annotated with the indoor locations where the
measurements were made. The goal of Zee is to enable smartphone-

based crowdsourcing of this training data set without requiring any

active user participation. In fact, Zee can run as a background pro-
cess on smart phones without affecting the user in any way. In
this section, we walk through an example scenario to provide an
overview of and intuition for how Zee achieves zero-effort crowd-
sourcing.
Inferring a user’s location. Bob is sitting in his office at work
at location A (Figure 1). He downloads the Zee client and con-
tinues with his work as usual. At some point he decides to walk
to Alice’s office at location D. Initially, Zee does not know where
Bob is located and hence Zee initializes Bob’s locations as a prob-
ability distribution uniformly across the entire floor, as depicted by
the gray region corresponding to Walk I in Figure 1). To walk to
Alice’s office, Bob takes the path ABCD indicated in Figure 1.

As Bob traverses this path, Zee uses the accelerometer, com-
pass and the gyroscope on Bob’s smartphone to continuously infer
the direction and distance walked by him. Then using the floor-
plan of the indoor space, Zee updates the probability distribution of
Bob’s location by eliminating possibilities that would require him
to violate the physical constraints imposed by the floorplan, such as
walking through walls. Thus, as Bob reaches point B and then goes
on to point C (as depicted in Figure 1), the spread of possible lo-
cations that Bob can be at, shrinks. Eventually, when Bob reaches
D, Zee is able to narrow down the possible locations of Bob to his
correct location. The key reason for this convergence is that there
is only one possible path in the shape of ABCD that can be accom-
modate within the indoor space. Thus, even without knowing Bob’s

initial location, but by simply tracking his movements, Zee is able

to eliminate all alternative possibilities and eventually determine

his location.

Backward belief propagation. At this point, having narrowed
down Bob’s location using the sequence of his movements, Zee
traces back the entire path taken by Bob and infers post facto that
he must have taken the path ABCD. Thus, Zee can also trace the

entire history of locations at which Bob was present.

Recording WiFi measurements. As Bob was traversing the path
from A to D, Zee was also periodically scanning for proximate
WiFi Access Points (APs) and recording the Received Signal Strength
(RSS) from these APs. Knowing the entire path ABCD taken by
Bob, Zee can associate with each RSS measurement the corre-
sponding location on the path ABCD where the measurement must
have been made. Thus, Zee obtains its first set of tuples < RSS

Measurements,Locations >. Also, from this point on, having
located Bob, Zee can track Bob’s future movements and hence his

locations. As more WiFi measurements are made, Zee on Bob’s
phone obtains more location-annotated WiFi measurements over
the rest of the day. Zee is thus is able to obtain location-annotated

WiFi measurements from Bob’s walks, without having any a priori

knowledge of his initial location.

Using past WiFi measurements to locate subsequent users. At
this point Alice learns about Zee from Bob and installs it in her
phone. She then decides to walk to Bob’s office from her office
along the path DCBA. This time, however, the Zee server has ob-
tained some WiFi measurements from Bob’s walk. Thus, Zee first
performs a WiFi scan and obtains RSS measurements from prox-
imate APs. Rather than initializing Alice’s locations uniformly
across the entire floor (as in Walk I in Figure 1), Zee uses these
RSS measurements and the database to obtain a confined proba-
bility distribution, as depicted by the gray region corresponding to
Walk II in Figure 1. In other words, the WiFi database obtained
from Bob’s walk helps Zee to narrow down the possibilities for Al-
ice’s initial location. Now as Alice walks, her location estimate
converges much more quickly to her true location (by the time she
reaches C in Figure 1) than it did in Bob’s case. Thus, each new

walk in Zee benefits from the WiFi measurements accumulated from

prior walks and in turn benefits the localization of future walks. In

fact, after enough walks, Zee will be able to accurately locate a

new user simply from a WiFi scan, using WiFi-based localization.

Figure 2: Zee Architecture

4. ZEE ARCHITECTURE
Figure 2 depicts a pictorial overview of Zee’s architecture. There

are two key components in Zee: Placement Independent Motion

Estimator (PIME) and Augmented Particle Filter (APF). PIME uses
mobile sensors such as the accelerometer, compass, and gyroscope
to estimate the user’s motion. The APF uses the motion estimates
from PIME and the floormap as input to track the user’s location
on the floor.
Placement Independent Motion Estimator (PIME). PIME uses
the accelerometer, compass and gyroscope data to perform three
key functions. First, it reliably determines whether or not the per-
son is walking. Second, when the user is walking, it generates an



event each time a step occurs and reports this event to the APF.
Third, it provides APF with a rough estimate of the Heading Off-

set (HO), i.e., the angle between the orientation of the phone and
the user’s direction of motion. The heading offset arises due to the
combination of two reasons: (i) in general, the phone might not
be oriented along the direction of the user’s walk. For example,
the user might be walking along the north-south direction while
holding the phone laterally, so that it points east-west, which is
a common scenario when phone users watch video while walking,
and (ii) the presence of magnetic materials often affects the phone’s
compass. The APF then starts with the rough HO information and
refines it to arrive at an accurate HO estimate.

A key feature of PIME is that it is independent of device place-

ment, i.e., whether the user is carrying the phone in his shirt pocket,

trouser pocket, hand, etc. This is a design requirement for Zee since
it must be able to crowdsource in the background without any active
user participation. To achieve this, Zee includes novel techniques
for placement independent step detection (described in Section 5)
and heading offset range estimation (described in Section 6).
Augmented Particle Filter. The key function of the APF is to track
the probability distribution of a user’s location as he/she walks on
the floor. In order to convert steps into distance, the APF needs
to estimate the stride length of the user, i.e., the distance traversed
per step. Further, to track the user’s location, estimating the direc-
tion of walking is crucial. While compass measurements provide
the phone’s orientation, the APF also estimates the HO to correctly
compute the user’s direction of motion. To simultaneously esti-
mate location, stride length, and heading offset, the APF takes a
novel approach – it maintains a four-dimensional joint probability
distribution function in the form of a particle filter, comprising 2D
location, stride length and, HO, and learns all these values as the
user walks on the floor. The APF also implements backward-belief
propagation, as described in Section 3.
Creating the WiFi Database. The APF runs belief back-propagation
to correct the user’s path history. This yields a time-indexed se-
quence of the user’s estimated location during their walk. These
location estimates are used to annotate the time-indexed WiFi infor-
mation that Zee obtains through periodic scans. Thus, Zee’s WiFi
database comprises WiFi measurement annotated with location in-
formation.
WiFi-based initialization in APF. After the WiFi database has
been initialized using the data from the first user, for subsequent
users, APF uses information from WiFi scans and the current WiFi
database, to obtain a confined initial location distribution, as de-
scribed in Section 8. Confining the initial distribution instead of
spreading it uniformly across the floor, enables a quicker conver-
gence to the actual location, as noted in Section 3.
Refinement of the WiFi database. The training data obtained
from each subsequent walk is in turn used to refine the existing
WiFi database, thus making it more accurate for the next walk. In
this manner, both APF-based user tracking and WiFi-based local-
ization work in tandem, benefitting each other and progressively
helping refine the WiFi database through crowdsourcing.

5. COUNTING STEPS
As described in Section 4, Zee uses step counting to estimate

the distance traversed by the user. There are two tasks for any step
counting algorithm: first, to reliably ascertain that the user is in-
deed walking, and second, to count the number of steps. Zee’s step
counting algorithm is designed to function irrespective of device
placement i.e., how the device is carried by the user.
Typical mobile phone placement scenarios. In order to find out
how people typically carry their phones we interviewed 30 employ-

ees in an office. Based on our interviews we found that while most
men carry their phones in front pant pockets, some carry in their
shirt pockets or rear pant pockets and pouches attached to their
belt. Women most often carry them in their hands or in handbags
and sometimes in pant pockets. Further, both men and women may
hold the phone in their hand while using it or to their ear while talk-
ing. In designing and evaluating our schemes we used these inputs
as a guide.
Data collection. In order to test our schemes, six different people
(four men and two women) were given smartphones to collect ac-
celerometer data. Men collected data for five different placements:
shirt pocket, pant front pocket, pant rear pocket, in hand while not
using the phone, and in hand while using the phone. Women col-
lected data for three different placements: handbag, in hand while
using the phone and in hand while not using the phone. For each of
these scenarios, data was collected when the user was not walking
as well as when the user was walking.
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Figure 3: Distribution of standard deviation of acceleration mag-

nitudes during idle and walking states.

Idle versus Motion. When the user is idle, it is expected that their
phone will register little acceleration. Thus, the standard devia-
tion in the magnitude of acceleration would be a good indicator of
whether there is any movement. Figure 3 depicts the probability
density function (PDF) of the standard deviation in the magnitude
of acceleration experienced by the phone over a 1s period, in both
idle and walking scenarios. The PDF was constructed from a total
of 12500 data points for idle and 17000 points for walking. As seen
from Figure 3, while the standard deviation is under 0.01g with
99% probability when the user is idle, it is over 0.01g with almost
100% probability when the user is walking. Using the standard
deviation by itself, however, is not sufficient to ascertain that the
user is walking. For example, sudden movements made by users
while they are idle (e.g.,hand gestures, turning or shifting in the
chair etc.) could also result in a large acceleration. To distinguish
walking from such sudden movements, we use a novel scheme that
exploits a very fundamental property of walking, namely its repet-
itive nature.
Repetitive nature of walks. Figure 4 depicts the acceleration val-
ues seen along the three axes by a mobile phone carried by two
different users, one carrying it in his shirt pocket and the other in
his front pant pocket. As seen from Figure 4, the acceleration along
each axis and in each case exhibits a very repetitive pattern. The
repetitive pattern arises because of the rhythmic nature of walking,
with a sequence of two steps (one left and one right) constituting
the period. While these patterns may be very different across users
and placements, the acceleration pattern for a given user with a
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Figure 4: Walking is repetitive

particular device placement repeats. Zee uses this observation to
not only count steps but also to ascertain that the user is indeed
walking.
Normalized Auto-correlation based Step Counting (NASC). The
intuition behind NASC is that if the user is walking, then the auto-
correlation will spike at the correct periodicity of the walker. Thus,
given an acceleration signal a(n), Zee computes the normalized
auto-correlation for lag τ at the mth sample as,

χ (m, τ) =

Pk=τ−1

k=0

»

(a(m + k) − µ(m, τ))
(a(m + k + τ) − µ(m + τ, τ))

–

τσ(m, τ)σ(m + τ, τ)
(1)

In Eqn 1, µ(k, τ) and σ(k, τ) are the mean and standard deviation
of the sequence of samples < a(k), a(k + 1),· · · a(k + τ − 1) >.

When the person is walking and τ is exactly equal to the period
of the acceleration pattern, the normalized auto-correlation will be
close to one. Since, the value of τ is not known a priori, NASC
tries values of τ between τmin and τmax to find the value of τ for
which χ(m, τ) becomes maximum. Thus,

ψ(m) = max
τ=τmax
τ=τmin

(χ (m, τ))) . (2)

ψ(m), the maximum normalized auto-correlation, simultaneously
provides two pieces of information. A high value (close to 1) sug-
gests that the person is walking and the corresponding value of
τ = τopt gives the periodicity of the person’s walk.

Since the sampling frequency of our accelerometer was 50Hz,
two step duration of most people lies between 40 and 100 sam-
ples. Consequently, in our implementation, the initial search win-
dow (τmin, τmax) is set to (40, 100). However, once the period-
icity of the person’s walk is found to be τopt, the search window
is reduced to a few samples around τopt. In our implementation,
after finding the user’s periodicity, we used τmin = τopt − 10 and
τmax = τopt + 10. NASC continuously updates the value of τopt

to account for small changes in the user’s walking pace.
Figure 5 depicts the distribution of ψ(m) for idle and walking

states. The idle state included movements such as hand gestures,
transition from sitting to standing and vice versa, and spinning in a
chair. As seen from Figure 5, when ψ is 0.7 or higher, the probabil-
ity that the person is idle is extremely low (less than 1%). Note that
NASC will also detect other repetitive activity such as running, but
in this paper we did not evaluate such activities.
Walk versus Idle decision in Zee To decide whether or not the
user is walking, we use a combination of both standard deviation in
the magnitude of acceleration σ||a|| and the maximum normalized
auto-correlation ψ. Zee transitions between the IDLE and WALK-
ING states as follows:
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Figure 5: Distribution of Maximum Normalized Auto-Correlation

during idle and walking states.

• If σ||a|| < 0.01 then state = IDLE.

• Else If ψ > 0.7 then state = WALKING.

• Else no change in current value of state.

Counting steps. Zee uses the periodicity estimated by NASC for
step counting. Having estimated τopt, NASC generates a step oc-
curred event every

τopt

2
samples while the person in the WALKING

state.

Hand Pant Pant Hand Shirt Hand Over

While Front Back Not Pocket

Using Pocket Pocket Using bag (all)

False 0% 0% 0% 0% 0% 0% 0%

+ive

False 2% 0% 0% 0% 0% 0% 0.6%

-ive

True 100% 100% 100% 100% 100% 100% 100%

+ive

True 98% 100% 100% 100% 100% 100% 99.4%

-ive

Table 1: Performance of step counting in Zee

Evaluation of step counting. Table 1 presents the findings from
our evaluation of step counting in Zee. A false positive means that
an extra step was counted while the user was in idle state, while
a false negative means that a step was missed while the user was
walking. Table 1 shows that these error rates are very low, often
zero, for various placements of the phone across users.

Figure 6: Heading Offset

6. ESTIMATING HEADING OFFSET RANGE
To track the user’s path, Zee must estimate the user’s direction

of walking. The mobile phone’s compass provides orientation of



the phone relative to the perceived magnetic north (i.e., the angle θ
in Figure 6). In general, however, the compass reading might not
be aligned with the direction of motion of the user. We refer to
this difference between the compass reading and the direction of
motion of the user as the heading offset (HO). HO arises due to a
combination of two factors: magnetic offset and placement offset.

Figure 7: Direction of North as shown by the compass across the

floor of a large office

Magnetic Offset: The presence of magnetic materials (e.g., metal)
in close proximity of the mobile phone can disturb its perception
of North, leading to an offset error in the compass measurement.
We refer to this difference between the true north and the north
perceived by the compass as the magnetic offset. As illustrated
in Figure 6, the phone perceives north to be towards N’ while the
true north is along N. The magnetic offset is depicted as the angle
γ in Figure 6. We have found that the magnetic offset is usually
a characteristic of a given location, depending on the construction
and other materials in the vicinity, and typically remains stable with
time. Figure 7 depicts the North direction as measured by a phone’s
compass at various locations on the floor of a large office building,
and Figure 8 shows the distribution of magnetic offset measured at
100 different locations in the floor. The magnetic offset is within
±15◦ in 90% of the locations, and occasionally as high as 30◦.
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Figure 8: Distribution of magnetic offsets

Placement offset: The phone’s compass measures the angle of
orientation of the phone with respect to the perceived north. The

phone, however, might not be oriented along the direction of mo-
tion of the user. For example, when the user walks while watching
a video or a photo with the phone held laterally, the orientation of
the phone would be at an angle of 90◦ relative to the direction of
motion of the user. We refer to this difference between the phone’s
orientation and the direction of motion of the user as the place-

ment offset. In the example of Figure 6, the placement offset is
depicted by the angle α. We found that for most placements such
as in the shirt or pant pockets, the placement offset is typically ±
45o. However, when the phone is placed in a pouch or a handbag,
the placement offset can be arbitrary. Nevertheless, the placement
offset typically remains unchanged even when the user takes a turn
and changes the direction of walking.
Heading Offset: As depicted in the Figure 6, the direction of mo-
tion of the user is α + θ + γ relative to the true magnetic north.
In other words, the heading offset in this scenario is α + γ — the
sum of the magnetic offset and the placement offset. While the
placement offset is typically constant during a single walk (unless
the user changes how he/she is carrying the phone in the middle
of the walk), the magnetic offset can change as the user moves
through different locations. Consequently, Zee must accommodate
both these components of the HO. To estimate HO, Zee takes a
two-step approach. It first estimates the HO in a broad range (sec-
tor) based on the acceleration experienced by the phone. Then, the
APF uses this range of values as the prior for the HO distribution
and proceeds to refine its estimate of the HO as the user walks. In
the remainder of this section, we describe our technique for esti-
mating the HO range; we defer discussion of the APF to Section 7.
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Figure 9: Spectrum of walking

The spectrum of a typical walk. Figure 9 depicts the magnitude of
the Fourier transform of the accelerometer signal registered by the
phone along directions parallel and perpendicular to the direction
of walking, for two different people. Person 1 carries the phone
in his shirt pocket while person 2 carries the phone in his front
pant pocket. As seen in Figure 9, the dominant frequencies are
multiples (harmonics) of a fundamental frequency. For example, in
the case of person 1, the fundamental frequency is 0.88 Hz while
for the second person it is 0.98 Hz. This fundamental frequency



corresponds to the periodicity of two steps, i.e., the combination of
a left step and a right step.

After observing the Fourier transform across several users and
placements, we discovered an interesting fact: the second harmonic

(two times the fundamental frequency, corresponding to the peri-

odicity of single steps) is either completely absent or is extremely

weak in the accelerations experienced by the phone in the direction

perpendicular to the user’s walk. It is however always present and

dominant in the direction parallel to the user’s walk. This rather cu-
rious phenomenon arises for the following reason. In the direction
parallel to the walk, each step (left or right) registers as a strong,
repetitive acceleration signal. However, this is not so in the perpen-
dicular direction, because the user’s sideways or lateral movement
(e.g., hip sway) only repeats every two steps. Indeed, as can be seen
in Figure 9, the second harmonic frequencies corresponding to 1.76
Hz (person 1) and 1.96 Hz (person 2), while being present in the
direction parallel to the user’s walk, are absent in the perpendicular
direction.
Heading Offset (HO) range estimation. Suppose the magnitude
of the second harmonic in the Fourier transform along north is Fy

and that along west is Fx. Almost the entire contribution to this
harmonic is from the direction of walking, so Fx and Fy must be
its components. Thus, α + θ + γ = arctan Fx

Fy
(Figure 6). How-

ever, since we work with the (unsigned) magnitude of the Fourier
transform, we cannot tell whether the person is walking forward or
backward along this angle. Consequently, it is equally likely that
α + θ + γ = arctan Fx

Fy
+ 180o. Knowing θ from the compass

then, the two possible values of α+ γ (HO) can be estimated.
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Figure 10: Error distribution of HO estimation

We characterize the error in our HO estimation scheme by test-
ing it on the same walk data collected across six different people,
as in Section 5. Figure 10 depicts the probability distribution of
the error in the HO estimation. The distribution is bimodal around
0◦ and 180◦, because, as noted above, the HO estimation scheme
cannot distinguish between the forward and backward directions.
Further, the error spans about 60◦ around each of 0◦ and 180◦.
Thus, the error in our HO estimation is large and by itself cannot
be used to track the user. Nevertheless, it helps narrow down the
possibilities to two diametrically opposite 90◦ sectors (expanded
from 60◦ to accommodated the possibility of larger errors) centered
about arctan Fx

Fy
. The APF then uses this estimate as the prior to

efficiently converge on the correct HO, as discussed next.

7. TRACKING USING AUGMENTED PAR-

TICLE FILTER (APF)
In this section we describe how Zee uses APF to track the users’

paths as they walk around in an indoor environment.
The key idea. The key idea of Zee is that as a user continues to

walk in an indoor environment, navigating through hallways and

turning around corners, the possibilities for the user’s path and lo-

cation shrink progressively. For example, if a person walks 10m
north followed by 12m east and then 20m south in an indoor space
with hallways and walls, there will likely be only a few paths in
the indoor environment that could accommodate such a walk with-
out having the user run into a wall or other barrier. The longer the
walk, the more concentrated the possibilities. As a user walks in
the indoor environment while going about their routine, Zee con-
tinually eliminates possibilities that violate wall constraints, until
eventually only one possibility remains. To drive towards such
convergence, Zee maintains a probability distribution of possible
locations of the user and updates it for every step taken by the user.

Zee uses the stride length to convert each step into the corre-
sponding distance traversed. However, people generally have dif-
ferent stride lengths, because of differences in height and walking
style, so Zee must estimate the stride length of each user, while si-
multaneously attempting to locate them. Further, as described in
Section 6, Zee must also estimate the HO accurately. To accom-
plish these tasks, Zee augments the standard particle filter to in-
clude not only of the location of the user but also the stride length
and the HO as two additional unknowns. Thus, Zee continuously
maintains and updates a four-dimensional joint probability distri-
bution over the 2D location, stride length, and HO of the user.

Figure 13: Stride estimation in Zee

Example of stride length estimation. For intuition on how stride
length estimation works, consider a simple example, where the
user’s initial location is assumed to be known but not their stride
length. Initially, Zee considers the full range of humanly feasible
stride lengths (0.5m to 1.2m, in our current implementation). The
user’s initial location is shown in Figure 13 as the particle concen-
tration (gray region) labeled A. As the user takes steps and moves to
B and then onto C, the gray region becomes elongated. The reason
is that since Zee consider a range of possible stride lengths, parti-
cles corresponding to a longer stride length travel farther than those
with a shorter stride length. At point D, when the user takes a right
turn into a passage way, particles with stride lengths that are either
too large or too short attempt to move to the right but are hindered
by the walls on either side of the passage way. Consequently, as
the user walks into the passage way, the possibilities for the user’s
stride length narrow down. The more the user walks and navigates
around corners, the more accurate the estimate becomes. While in
this simple example we assumed that the initial location is known,
even if the initial location were unknown, Zee can estimate location
and stride length simultaneously as the user continues to walk.

In practice, we found that within a single walk, users exhibit up



Figure 11: An example run of Zee

Figure 12: Backward belief propagation in Zee

to ±10% variation in their stride length. To account for this varia-
tion, we add a random error δ uniformly distributed in the range of
± 10% of the stride length (used in Equation 3 below).
Working with heading offset. Zee estimates the HO in a similar
manner as it estimates the stride length. Initially, the heading offset
is uniformly distributed within the two 90◦ sectors suggested by the
HO range estimation scheme in Section 6. As the user walks, in-
correct HO values are eliminated due to the wall constraints. While
this approach accounts for the errors in the constant component of
HO (due to phone placement), the APF must also account for the
changes in HO due to different magnetic offsets at different loca-
tions. In order to accommodate this variation, the APF models this
component as a compass measurement error — a Gaussian random
variable β that is added to the compass measurement (used in Equa-
tion 3 below). We found that using a zero mean Gaussian with a
standard deviation of 5◦ typically was sufficient in our floor.
The particle filter. The APF maintains a four-dimensional joint
probability distribution as a particle filter, with a set of particles
(samples), X = (X1,X2· · · ,XN ) representing the probability dis-
tribution. Here Xi = (xi, yi, si, αi), with (xi, yi) being the 2D
location, si the stride length, and αi the placement offset. After the
user takes the kth step, the ith particle is updated as,

x
k
i = x

k−1

i + (si + δi) cos(αi + θ + βi) (3)

y
k
i = y

k−1

i + (si + δi) sin(αi + θ + βi) (4)

As noted earlier, si is perturbed by δi to account for variation in the
stride length, and θ (the compass reading) is perturbed by βi to ac-
count for compass measurement error and variation in the magnetic
offset.

After each update, particles are tested to see if they violate any
wall constraints. If the line joining (xk−1

i , yk−1

i ) and (xk
i , y

k
i ) in-

tersects a wall then the particle is eliminated. In order to replace

each eliminated particle, a new particle is randomly chosen from
the particle set at the k − 1th step and updated. Note that si and αi

are not updated, rather incorrect values only get eliminated.
In our implementation we found that within one step, often it

is possible to sample the compass several times. Accordingly, we
use an average value of all the samples to arrive at the θ for the
step. Sometimes, however, when the user turns, θ might change
by a large amount within one step. Consequently, if the compass
reading changes by more than 20◦ within a single step, we per-
form incremental updates by subdividing the step into fractional
sub-steps.
An example walk in an office building. Figure 11 shows how
Zee works in a large office floor, measuring 65m × 35m. The user
was asked to walk from O to D, along the path shown in Figure 11.
There are three turns in the path, at points A, B and C. Initially,
particles were instantiated at all possible locations with all possi-
ble stride lengths and heading offsets spread uniformly over the
two 90◦ sectors suggested by the HO range estimator. As the user
walks to point A and then turns, the spread of particles dramati-
cally decreases, as several possibilities are eliminated. Further, as
the user walks towards point B, even more possibilities are elimi-
nated. Finally, as the user navigates around the turn at B, Zee has
narrowed down to the user’s correct location.
Backward belief propagation. After the turn taken at B, the po-
sition of the user is localized to a single concentration of particles.
Tracing these particles back in time would, therefore, allow us to
infer the past locations of the user accurately. To enable such a
trace-back, each particle X

k
i after the kth step maintains a link to

its parent particle, i.e., the particle X
k−1

j that it was generated from.
In the backward belief propagation step, out of the set of particles
X

k−1 = {Xk−1

1
,Xk−1

2
,· · · ,Xk−1

N }, the particles with no children

surviving in the succeeding step (i.e., in the set X
k), are elimi-

nated. This helps ensure that possibilities that are filtered out in



future steps are not retained in the past steps. Figure 12 depicts
the results of applying backward belief propagation on the user’s
walk along the reverse direction, starting from after the turn at B
and going back to the initial location O. As the figure shows, us-
ing backward belief propagation, Zee is able to accurately trace the
user’s path back to the starting location O.

8. PUTTING IT ALL TOGETHER: ZERO-

EFFORT CROWDSOURCING
Zee periodically scans for beacons from proximate WiFi Access

Points (AP) and records the Received Signal Strength (RSS) mea-
sured, along with a timestamp. Also, as Zee tracks the path taken by
users, whether in the forward direction or through backward belief
propagation, it annotates the path with timestamps, indicating the
times at which the user was located at particular points in the path.
Thus, Zee can determine where in the floor a certain WiFi mea-
surement was taken and thereby generate location-annotated WiFi
measurements of the form (location, WiFi RSS). This database of
measurements can then be used to locate new users using existing
WiFi localization techniques. We now describe the two WiFi local-
ization schemes used in our evaluation.
HORUS. HORUS uses a set of location-annotated RSS measure-
ments to construct a probability distribution, P (rssAPk

= r|x =
xi), i.e., the probability of measuring an RSS value of r from ac-
cess point APk at location xi. x here is a 2-dimensional location.
In order to locate a device using HORUS, a device measures a vec-
tor of RSS measurements, R = < r1,r2,· · · ,rm >, where ri is
the RSS from APi. The probability of observing R at a location
xi is then computed as,

P (R|x = xi) =
Y

k

P (rssAP k
= rk|x = xi) (5)

Using Bayesian inference, HORUS computes P (x = xi|R). The
location of the device is then estimated as either the maximum like-

lihood location (i.e., the location with the highest probability) or
the expectation over all locations (expected location).
EZ. EZ relies on a widely-used RF propagation model for WiFi
received signal strength (RSS) in indoor environments — the Log
Distance Path Loss (LDPL) model. The LDPL model estimates
RSS rssk

x
(in dBm) measured at a location x of the signal from

APk placed at a location ck as,

rss
k
x

= rss
k
0 − 10γk log (d (x, ck)) +N(x). (6)

In Eqn 6, rssk
0 is the RSS from APk at the reference distance of

1m, γk is the path loss exponent, and d(x, ck) is the distance be-
tween locations x and ck. N(x) captures the random fluctuations
in RSS due to multi-path effects. EZ uses WiFi measurements (a
few annotated with location information but most not) from within
the indoor space data to construct the LDPL model for each WiFi
AP. Then, to locate a device, it converts the RSS measurement ob-
tained from an AP to the estimated distance from that AP using,

d(x, ck) = 10

 

rssk
0
−rk

10γ

!

. (7)

Standard trilateration is then used to locate the device, once its dis-
tance from three or more APs has been estimated.
Using existing measurement database for subsequent crowd-

sourcing. In the absence of prior information, Zee starts by spread-
ing the probability distribution of a user’s location across the floor.
However, once “enough” location-annotated WiFi measurements
have been gathered, Zee can use existing localization schemes such
as HORUS or EZ to initialize the probability distribution in a more

localized area rather than over the entire floor. When using HO-
RUS, Zee draws random samples from P (x = xi|R) and initial-
izes the locations of the particles accordingly. When using EZ, Zee
perturbs the measured RSS values to simulate the effect of mul-
tipath (using a Gaussian distribution with mean 0dB and standard
deviation 5dB) and then generates sample locations for the parti-
cle filter. Using such a localized distribution rather than one spread
across the entire floor helps speed up the convergence of the parti-
cle filter, thereby aiding subsequent crowdsourcing.
Dealing With Paths With Unconverged Particles. Not all paths
may lead to a unique location in Zee, e.g., short paths that do not
include enough turns to uniquely establish the user’s trajectory. In
such cases, the spread of particles will typically be large instead of
being confined to a small region. Zee identifies such unconverged
paths using measures such as the variance in the locations of parti-
cles and the number well-separated clusters, and discards the WiFi
measurements corresponding to such walks.

9. EVALUATION
We evaluate the performance of Zee in a large office building,

with a 65m × 35m floor plan, as depicted in Figure 14. We seek
to answer several questions, including: (a) how well is Zee able to
track users, (b) if Zee had been provided the user’s initial location
or had accurate knowledge of the heading offset, would its perfor-
mance have improved significantly, (c) how well does Zee estimate
quantities such as the stride length and the heading offset of the
user, and (d) how well do existing localization schemes perform
when using the location-annotated data generated by Zee versus
using manually collected data.

Experimental methodology. In a real-world setting, we expect
several users to be running the Zee client on their phone as they
walk through various sections of an indoor space. Further, users
are unlikely to be walking continuously; they would typically walk
between locations of interest and dwell at certain locations (e.g., a
store) for a significant length of time. However, for our evaluation,
we did not have the luxury of several users. Instead, we handed a
phone running the Zee client to a user, who kept it with himself for
about 15 hours continuously. Our experiment included elements
aimed at emulating the real-world characteristics noted above.

To recreate walks with breaks at various locations, the user was
asked to walk to various parts of the office floor whenever he had
the time and leave the phone there for periods ranging from 20 min-
utes to a half-hour. Zee was left running on the phone continuously.
Upon detecting no walking activity for more than 10 seconds, the
accelerometer data was not processed until walking was detected
again. WiFi data, however, is more valuable when collected from a
single location over an extended period, since it helps capture the
variability in the WiFi signal at that location. Consequently, WiFi
RSS measurements were collected even during the time when the
device was stationary. To record the ground truth for location, the
user made note of the locations on a map where he had stopped and
the corresponding time periods.

In order to evaluate the benefit of using data from previous users
for subsequent data collection, the user in our experiment stopped
Zee briefly, walked over to a completely different location on the
floor, and then restarted Zee. In this manner four different “walks”
were created by restarting Zee four times. Each time, Zee would
initialize the user’s location based on the WiFi data gathered from
the previous walks.

Figure 14 shows the paths covered by the user during the 15-hour
period (shown as the dark lines in the figure). Several of the loca-
tions were visited multiple times over the course of the experiment.
Zee’s tracking performance. We first show the performance of



Figure 14: Total area covered during the 15

hrs by the user
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Figure 15: Location errors seen by Zee dur-

ing walk 1.
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Figure 16: Stride length errors seen by Zee

during walk 1.
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Figure 17: Location errors seen after back-

ward belief propagation by Zee during walk
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Figure 18: Using WiFi measurements from

previous walks to start subsequent walks
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Figure 19: Performance of WiFi localiza-

tion on Zee data

Zee on the first walk when there was no prior data from the floor.
Note that this was not a continuous walk but instead was punctuated
by several long stops, each lasting 20-30 minutes, as the user went
to different locations on the floor. The walk lasted a total of 3 hours.
Figure 15 depicts the location error seen by the particle filter at
9 different checkpoints (i.e., predetermined locations, where the
ground truth was recorded) as a function of the step count during
the walk. The location error was computed by estimating the user’s
location as the average location over all surviving particles, and
then finding its distance from the ground truth location.

Figure 15 shows the location error with the particle filter run
in the forward direction. As can be seen from the curve labeled
Zee, initially the average error is extremely high. This is because
the initial location is unknown and particles are spread all across
the floor. Somewhere between steps 80 and 100, the user took a
turn that eliminated all spurious possibilities and the error dropped
sharply. At the end of the walk, the location error was under a
meter; in other words, Zee’s location estimate was correct to the
last step!

Figure 17 depicts the location error after backward belief propa-
gation was applied to the walk. As can be seen from the figure, the
location error along the entire path is under 2m after this step.
Zee’s performance with initial location and HO being known.

In this experiment, we tested two different scenarios. In the first
scenario, the initial location of the user was kept as unknown while
heading offset was treated as known. In the second scenario, both

heading offset and initial location were treated as known. Stride
length, however, was assumed to be unknown in both cases.

As seen from Figure 15, with the HO known but initial location
unknown, Zee converged must faster to the correct location com-
pared to not knowing the HO, which is as expected. When both
HO and initial location were known, initially the error increased
because the stride length was unknown. However, as soon as Zee
learned the stride length, the localization error reduced.

Figure 17 depicts the localization error for both these scenarios
after backward belief propagation is applied. As seen from the fig-
ure, the location error along the entire path remains under 1m in
both the scenarios. Further, the key point to note here is that Zee

was able to perform similarly well despite not knowing HO and ini-

tial location as when this information was known a priori, the only

difference being that it took longer to converge in the former case,

which is as expected.

Zee’s estimation of stride length. To evaluate how well Zee es-
timates stride length, we first measured the user’s stride length by
making him walk 20 steps in a straight line and directly measur-
ing the distance covered. Then, during the actual experiment, we
estimated the stride length at any step as the average stride length
over the surviving particles. Figure 16 shows that the error in stride
length estimation drops to around 5cm by the end of the walk.
Using WiFi measurements from previous walks for subsequent

walks. For each successive walk, Zee was able to use the WiFi
data gathered from the prior walks to estimate the distribution of
the user’s starting location. To compute this distribution, we used



EZ, as described in Section 8. To emulate a new user for each
walk, the stride length and HO were deemed as being unknown at
the beginning of each successive walk. Figure 18 shows that by
using WiFi information from prior walks, Zee is able to converge
much faster and have smaller location errors than otherwise.
Performance of WiFi localization using Zee-based crowdsourc-

ing. To evaluate the performance of existing WiFi-based localiza-
tion schemes when fed with Zee-based crowdsourced data, we first
set up the baseline by collecting WiFi measurements manually at
117 locations, spaced about 3m apart and spread across the floor.
At each location approximately 1000 WiFi beacons were collected
for each proximate AP. This data was used to train HORUS and
EZ. Additionally, we collected data from 91 separate test locations
spread across the entire floor. Figure 19 depicts the distribution of
localization error seen by EZ and HORUS at these test locations
(labeled as EZ and HORUS in the figure).

Next, instead of the data gathered manually, we used the data
obtained from Zee over the four walks to train EZ and HORUS,
and tested these across all the 91 test locations. The correspond-
ing distributions of localization error are also shown in Figure 19
(labeled as ZeeEZ and ZeeHORUS). We see that while ZeeEZ and
ZeeHORUS have almost the same 50%ile errors as EZ and HO-
RUS, respectively, the 80%ile errors are significantly larger. This
was because, at the test locations that were far from all of the walk
paths (which defined the spatial extent of crowdsourcing in this ex-
periment), ZeeEZ and ZeeHORUS performed much worse than EZ
and HORUS (which had the benefit of manually-gathered training
data from across the floor).

To evaluate the performance of Zee more fairly, we tested Zee
only on the test locations that were within 5m of any of the four
walk paths. Figure 19 depicts the corresponding error distributions
(labeled as ZeeEZ Path Only and ZeeHORUS Path Only). We see
that the 50%ile and 80%ile errors are 1.2m and 2.3m, respectively,
which are comparable to those seen when manually-gathered data
is used for training (the curves labeled EZ and HORUS). This en-
couraging result suggests that Zee-based crowdsourcing could be
effective and could enable localization with high accuracy, pro-
vided the space is well-covered by users during the course of their
crowdsourcing walks.

10. CONCLUSION
In this paper, we have presented Zee, a system that enables crowd-

sourcing of location-annotated WiFi measurements in indoor spaces,
using the mobile phones carried by users in normal course. A key
attribute of crowdsourcing with Zee is that it is “zero-effort”, not
requiring any active user intervention in terms of location input,
placement of the phone, or other aspect. Zee employs a set of novel
techniques to resolve ambiguity in location during crowdsourcing,
using inertial and WiFi measurements, and a map of the indoor
space as the inputs. The data thus gathered can help train exist-
ing WiFi-based localization algorithms. Our evaluation on a large
office floor shows that existing WiFi-based localization schemes,
both fingerprinting-based and modeling-based, are able to perform
accurate localization when trained with data that is crowdsourced
automatically using Zee.
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